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Abstract

Flexible incorporation of both geographical patterning and risk effects in cancer sur-

vival models is becoming increasingly important, due in part to the recent availability

of large cancer registries. The analysis of spatial survival data is challenged by the

presence of spatial dependence and censoring for survival times. Accurately modeling

the risk factors and geographical pattern that explain the differences in survival is

particularly of interest. Within this dissertation, the first chapter reviews commonly-

used baseline priors, semiparametric and nonparametric Bayesian survival models

and recent approaches for accommodating spatial dependence, both conditional and

marginal. The last three chapters contribute three flexible survival models: (1) a pro-

portional hazards model with areal-level covariate-adjusted frailties with application

to county-level breast cancer survival data, (2) a marginal Bayesian nonparametric

model for time to disease arrival of threatened amphibian populations, and (3) a

generalized accelerated failure time model with spatial intrinsic conditionally autore-

gressive frailties with application to county-level prostate cancer data. An R package

spBayesSurv is developed to examine all the proposed models along with some tra-

ditional spatial survival models.
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Introduction

Methodology for modeling spatially correlated survival data has attracted increasing

attention across diverse studies due to the important role geographical information

can play in predicting survival (i.e. failure time or time-to-event). There are two

general types of spatial survival data: (a) point-referenced (or geostatistical), where

survival times along with covariates are measured with exact locations that vary

continuously over a study region; and (b) areal-referenced, where the study region

is partitioned into a finite number of areal units with well-defined boundaries. For

example, one of our motivating data sets aims at quantifying the effects of fungus

spread on the time-to-disease distribution of threatened frog populations in Sequoia

Kings Canyon National Park, where exact latitude and longitude are available for

each frog population. But sometimes locational information may be only available

at the areal level. Cancer data from the Surveillance Epidemiology and End Results

(SEER) program of the National Cancer Institute involve the analysis of areal type

survival data, since the location for each patient is only recorded at the county level.

This dissertation is organized as follows. Chapter 1 reviews commonly-used base-

line priors, semiparametric and nonparametric Bayesian survival models and recent

approaches for accommodating spatial dependence, both conditional and marginal.

Chapter 2 presents a covariate-adjusted frailty proportional hazards model for the

analysis of clustered right-censored data. Chapter 3 develops a marginal Bayesian

nonparametric survival model for point-referenced right-censored data. Chapter 4

proposes a generalized accelerated failure time model with intrinsic conditionally au-

toregressive frailties for arbitrarily censored areal-referenced data.

1
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Chapter 1

Background and Dissertation Overview1

Survival analysis has received a great deal of attention as a subfield of

Bayesian nonparametrics over the last 50 years. In particular, the fitting

of survival models that allow for sophisticated correlation structures has

become common due to computational advances in the 1990s, in partic-

ular Markov chain Monte Carlo techniques. Very large, complex spatial

datasets can now be analyzed accurately including the quantification of

spatiotemporal trends and risk factors. This chapter reviews four non-

parametric priors on baseline survival distributions in common use, fol-

lowed by a catalogue of semiparametric and nonparametric models for

survival data. Generalizations of these models allowing for spatial depen-

dence are then discussed and broadly illustrated. Throughout, practical

implementation through existing software is emphasized.

1.1 Introduction

This chapter reviews several semiparametric Bayesian survival models, and summa-

rizes some recent proposals to allow for spatial and covariate-adjusted dependence

among the survival times. Two generalizations of the accelerated failure time mod-

el that allow crossing cumulative hazards for different covariate combinations, and

hence crossing survival curves, are also discussed.

1Zhou, H. and Hanson, T. (2015). Bayesian spatial survival models. In Nonparametric Bayesian
Methods in Biostatistics and Bioinformatics (Frontiers in Probability and the Statistical Sciences),
to appear. P. Müller and R. Mitra, editors. Springer. Reprinted here with permission of Springer.

2
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Four prior specifications in broad use are first reviewed in Section 1.2. A catalogue

of Bayesian survival models is presented in Section 1.3. Section 1.4 discusses the

incorporation of dependence among survival times across the models in Section 1.3,

focusing mostly on spatial dependence followed by several real-data illustrations in

Section 1.5. The chapter concludes with a short discussion in Section 1.6. Please note

at the outset that, although a review is attempted, the cited papers and approaches

are biased toward what the authors are aware of and have found useful.

1.2 A selection of nonparametric priors

A common starting point in the specification of a regression model for time-to-event

data is the definition of a baseline survival function, S0, that is modified (either di-

rectly or indirectly) by subject-specific covariates x. Let T0 be a random survival

time from the baseline group (with all covariates equal to zero). The baseline sur-

vival function is defined by S0(t) = P (T0 > t) = exp{−H0(t)} where H0(t) is the

baseline cumulative hazard. For continuous outcomes, the baseline density and haz-

ard functions are f0(t) = − d
dt
S0(t) and h0(t) = f0(t)/S0(t) = d

dt
H0(t), respectively.

The cumulative distribution, survival, density and hazard functions for a member of

the population with covariates x will be denoted by Fx(t), Sx(t), fx(t), and hx(t),

respectively.

A wide variety of priors have been used in Bayesian survival analysis over the last

40 years. We focus on four of these: the gamma process, B-splines, Dirichlet process

mixtures, and mixtures of Polya trees. Additional reviews can be found in Sinha and

Dey (1997), Ibrahim et al. (2001), Müller and Quintana (2004), Hanson et al. (2005),

Nieto-Barajas (2013), and Müller et al. (2015).

Gamma process

Kalbfleisch (1978) proposed the gamma process (GP) to model the cumulative hazard

3
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function H0 in the context of the proportional hazards (PH) model (Cox, 1972).

Let Hθ(t) be an increasing, left-continuous function on [0,∞) indexed by θ, where

Hθ(0) = 0; typically Hθ is parametric. Let H0(·) be a stochastic process such that

(i) H0(0) = 0, (ii) H0(·) has independent increments in disjoint intervals, and (iii)

H0(t2)−H0(t1) ∼ Γ{α(Hθ(t2)−Hθ(t1)), α} for t2 > t1, where Γ(α, β) implies mean

α/β. Then {H0(t) : t ≥ 0} is said to be a GP with parameter (α,Hθ) and denoted

H0 ∼ GP (α,Hθ).

Note that E{H0(t)} = Hθ(t) so that H0 is centered at Hθ. Also, Var{H0(t)} =

Hθ(t)/α so that, similar to the Dirichlet process and Polya trees described below, the

precision parameter α controls how “close” H0 is to Hθ and provides a prior measure

of how certain one is that H0 is near Hθ. Ferguson (1973) recast the Dirichlet process

(DP) as a scaled GP.

The posterior of the GP is characterized by Kalbfleisch (1978); his results for the

PH model simplify when no covariates are specified. With probability one, the GP

is a monotone nondecreasing step function, implying that the corresponding survival

function S0 is a nonincreasing step function. Similar to the DP, matters are com-

plicated by the presence of ties in the data with positive probability. When present

in the observed data, such ties make the resulting computations awkward. Clayton

(1991) described a Gibbs sampler for obtaining inferences in the PH model with a

GP baseline.

Burridge (1981) and Ibrahim et al. (2001) suggest that the model as proposed

by Kalbfleisch (1978) and extended by Clayton (1991) is best suited to grouped

survival data. Walker and Mallick (1997) considered an approximation to the GP

for continuous data. Define a partition of (0,∞) by {(aj−1, aj]}Jj=1 ∪ (aJ ,∞) where

0 = a0 < a1 < a2 < · · · < aJ+1 =∞. Here, aJ is taken to be equal to be largest event

time recorded. If H0 ∼ GP (α,Hθ), then by definition h0j = H0(aj) − H0(aj−1) ind.∼

Γ{α(Hθ(aj) − Hθ(aj−1)), α}. Walker and Mallick (1997) make this assumption for

4
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the given partition and further assume that h0(t) is constant and equal to h0j for

t ∈ (aj−1, aj], j = 1, . . . , J , yielding a particular piecewise exponential model. So the

piecewise exponential model, which has a long and fruitful history in both Bayesian

and frequentist survival analysis, can be viewed as an approximation to the GP when

gamma increments are used.

B-splines and Bernstein polynomials

A flexible and popular basis expansion approach to modeling functions over a fi-

nite interval [a, b] is based on B-splines (de Boor, 2001). A B-spline is a piecewise-

differentiable polynomial of a given degree d; d = 2 and d = 3 give quadratic and cubic

B-splines, respectively. The B-spline is defined over the union of intervals with end-

points termed knots. The overall polynomial is continuous (d ≥ 1) or differentiable

(d ≥ 2) over the range of the knots. Knots can be equispaced yielding a cardinal

B-spline or else irregularly spaced. Computation is especially easy for equispaced

knots and so we focus on that here; generalizations can be found in Kneib (2006).

The B-spline includes polynomials of the same or lower degree as special cases; e.g.

a quadratic B-spline includes all constant, linear, and parabolic functions over [a, b].

For degree d = 2, the quadratic B-spline “mother” basis function is defined on

[0, 3]

ϕ(x) =



0.5x2 0 ≤ x ≤ 1

0.75− (x− 1.5)2 1 ≤ x ≤ 2

0.5(3− x)2 2 ≤ x ≤ 3

0 otherwise


.

Say the number of basis functions is J . The B-spline basis functions are shifted,

rescaled versions of ϕ. Let x1, . . . , xn be event times of interest and x(1), . . . , x(n)

their order statistics. The j-th basis function is Bj(x) = ϕ
(
x−x(1)

∆ + 3− j
)
, where

∆ = x(n)−x(1)
J−2 . A B-spline is typically used with a rather large number of basis

5
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functions J , e.g. 20–40. The B-spline model for an unknown function is

g(x) =
J∑
j=1

θjBj(x). (1.1)

A global level of smoothness can be incorporated into a B-spline model by encouraging

neighboring coefficients to be similar; the more regular the coefficients are, the less

wiggly g is. The hazard can be modeled directly as h0(t) = g(t) with the constraint

θj ≥ 0 (Wang and Dunson, 2011; Pan et al., 2014; Lin et al., 2015; Li et al., 2015b);

typically θ1, . . . , θJ have exponential or gamma priors. Komárek and Lesaffre (2008)

consider a limiting case of the B-spline order as a model for densities and model the

θj ≥ 0 via a generalized logit transformation so that ∑J
j=1 θj = 1.

Alternatively, to avoid the positivity constraints on θi, one can model h0(t) =

exp{g(t)} (Hennerfeind et al., 2006; Kneib and Fahrmeir, 2007) with θj ∈ R. Classical

spline estimation on {(xi, yi)}ni=1 proceeds by minimizing ∑n
i=1(yi − g(xi))2 subject

to the “wiggliness” penalty
∫ b
a |g′′(x)|2dx ≤ c for some c > 0. This is equivalent to

maximizing a penalized log-likelihood. Borrowing from Eilers and Marx (1996), Lang

and Brezger (2004) recast and developed this idea into a Bayesian framework. Let

D2 ∈ R(J−2)×J and D1 ∈ R(J−1)×J be defined as

D2 =



1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
... ... . . . . . . . . . ...

0 0 · · · 1 −2 1


and D1 =



1 −1 0 · · · 0

0 1 −1 · · · 0
... ... . . . . . . ...

0 0 · · · 1 −1


.

For equispaced cases, quadratic (and cubic) B-splines the penalty can be written as∫ b
a |g′′(x)|2dx = ||D2θ∆||2, where θ = (θ1, . . . , θJ).

Optimization with the D2 penalty is equivalent to assuming a second order random-

walk prior, that is, the improper prior D2θ ∼ NJ−2(0, λ−1IJ−2). As λ becomes large,

g′′(x) is forced toward zero and g(x) becomes linear. Alternatively, a first order ran-

dom walk prior is given by D1θ ∼ NJ−1(0, λ−1IJ−1). When λ is large, adjacent basis

functions are forced closer and g′(x) is forced toward zero, yielding a constant g(x).
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The Bernstein polynomial is a special case of the B-spline with support [0, 1]

(Petrone, 1999a,b). A Bernstein polynomial prior for a function g on [0, 1] is a

discrete mixture of beta distributions with equispaced means and integer parameters;

i.e. the functions Bj(x) in (1.1) are

Bj(x) = Γ(J + 1)
Γ(j)Γ(J − j + 1)x

j−1(1− x)J−j.

The resulting g is then transformed to [0, b) (b =∞ for some transformations) for use

in baseline survival modeling (Gelfand and Mallick, 1995; Carlin and Hodges, 1999;

Banerjee and Dey, 2005; Chang et al., 2005; Chen et al., 2014).

B-splines are now a standard tool for modeling hazard functions. Like the GP,

the piecewise constant hazard is a special case, i.e. a first order B-spline with d = 0;

piecewise exponental models have been used extensively in Bayesian survival analysis,

e.g. Ibrahim et al. (2001). Existing approaches to modeling hazard functions using

B-splines (Gray, 1992; Hennerfeind et al., 2006; Sharef et al., 2010) choose either

equispaced knots over the spread of the observed data or knots at the empirical

quantiles of the observed event times. Chen et al. (2014) and Li et al. (2015b)

instead choose knot locations based on an approximation of underlying parametric

family, e.g. Sθ indexed by θ.

Dirichlet process mixture model

A random probability measure G follows a DP (Ferguson, 1973) with parameters

(α,G0), where α > 0 and G0 is an appropriate probability measure defined on Rd,

written as

G|α,G0 ∼ DP (αG0), (1.2)

if for any measurable nontrivial partition {Bl : 1 ≤ l ≤ k} of Rd, then the vector

(G(B1), . . . , G(Bk))′ has a Dirichlet distribution with parameters {αG0(Bl) : l =

7
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1, . . . , k}. It follows that

G(Bl)|α,G0 ∼ Beta(αG0(Bl), αG0(Bc
l )),

and therefore E{G(Bl)|α,G0} = G0(Bl) and V ar{G(Bl)|α,G0} = G0(Bl)G0(Bc
l )/(α+

1). Thus G is centered at G0 with precision α. The DP was used by Susarla and

Van Ryzin (1976) to model and estimate the survival function for right-censored

data; Müller et al. (2015) provide R code to implement this approach.

If G|α,G0 ∼ DP (αG0), then the process can be represented by the stick-breaking

representation (Sethuraman, 1994),

G(·) =
∞∑
i=1

wiδθ(·), (1.3)

where δθ(·) is Dirac measure at θ, wi = Vi
∏
j<i(1− Vj), with Vi|α

iid∼ Beta(1, α), and

θi|G0
iid∼ G0. Note that E(wj) > E(wj+1) for all j, so the weights are stochastically

ordered.

Convolving a DP with a parametric kernel, such as the normal, gives a DP mixture

(DPM) model (Lo, 1984; Escobar and West, 1995). A simple DPM of Gaussian

densities for continuous data ε1, . . . , εn is given by

εi|G
iid∼
∫
N(µ, σ2)dG(µ, σ2), (1.4)

where N(µ, σ2) denotes the normal density with mean µ and σ2, and the mixing

distribution, G, is a random probability measure defined on R × R+, following a

DP. The stick-breaking representation recasts (1.4) as a countably infinite mixture of

normals given by

εi|G
iid∼
∞∑
j=1

Vj j−1∏
k=1

(1− Vk)
N(µj, σ2

j ). (1.5)

The prior distribution on εi is centered at the normal distribution; Griffin (2010)

discusses prior specifications that control the “non-normalness” of this distribution.

8
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Polya tree

A Polya tree (PT) successively partitions the reals R (or any other domain) into finer

and finer partitions; each refinement of a partition doubles the number of partition

sets by cutting the previous level’s sets into two pieces; there are two sets at level

1, four sets at level 2, eight sets at 3, and so on. We focus on a PT centered at

the standard normal density, that is, N(0, 1) is the centering distribution for the

Polya tree. At level j, the Polya tree partitions the real line into 2j intervals Bj,k =

(Φ−1((k − 1)2−j),Φ−1(k2−j)) of probability 2−j under Φ, k = 1, . . . , 2j, where Φ(·) is

the cumulative distribution function of N(0, 1). Note that Bj,k = Bj+1,2k−1 ∩Bj+1,2k.

Given an observation ε is in set k at level j, i.e. ε ∈ Bj,k, it could then be in either of

the two offspring sets Bj+1,2k−1 or Bj+1,2k at level j+1. The conditional probabilities

associated with these sets will be denoted by Yj+1,2k−1 and Yj+1,2k. Clearly they

must sum to one, and so a common prior for either of these probabilities is a beta

distribution (Ferguson, 1974; Lavine, 1992, 1994; Walker and Mallick, 1997, 1999;

Hanson and Johnson, 2002; Hanson, 2006a; Zhao et al., 2009), given by

Yj,2k−1|c
ind.∼ Beta(cj2, cj2), j = 1, . . . , J ; k = 1, . . . , 2j−1,

where c > 0, which ensures that every realization of the process has a density, allowing

the modeling of continuous data without the need of convolutions with continuous

kernels.

The user-specified weight c > 0 controls how closely the posterior follows N(0, 1)

in terms of L1 distance (Hanson et al., 2008), with larger values forcing the PT process

G closer to N(0, 1); often a prior is placed on c, e.g. c ∼ Γ(a, b). The PT is stopped

at level J (typically J = 5, 6, 7); within the sets {BJ,k : k = 1, . . . , 2J} at the level J ,

G follows N(0, 1) (Hanson, 2006a). The resulting model for data ε1, . . . , εn is given

by

εi|G
iid∼ G, (1.6)
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where

G ∼ PTJ(c,N(0, 1)). (1.7)

The corresponding density is given by

p(ε|{Yj,k}) = 2Jφ(ε)
J∏
j=1

Yj,d2jφ(ε)e, (1.8)

where d·e is the ceiling function, and so a likelihood can be formed. For the simple

model, the PT is conjugate. Let ε = (ε1, . . . , εn). Then

Yj,2k−1|ε
ind.∼ Beta

(
cj2 +

n∑
i=1

I{d2jφ(εi)e = 2k − 1}, cj2 +
n∑
i=1

I{d2jφ(εi)e = 2k}
)
,

and Yj,2k = 1− Yj,2k−1.

Location µ and spread σ parameters are melded with expression (1.6) and the PT

prior (1.7) to make a median-µ location-scale family for data y1, . . . , yn, given by

yi = µ+ σεi,

where the εi | G iid∼ G and G follows a PT prior as in expression (1.7), with the

restriction Y1,1 = Y1,2 = 0.5. Allowing µ and σ to be random induces a mixture of

Polya trees (MPT) model for y1, . . . , yn, smoothing out predictive inference (Lavine,

1992; Hanson and Johnson, 2002). Note that Jeffreys’ prior under the normal model is

a reasonable choice here (Berger and Guglielmi, 2001), and leads to a proper posterior

(Hanson, 2006a).

1.3 Survival models

Proportional hazards

A proportional hazards (PH) model (Cox, 1972), for continuous data, is obtained by

expressing the covariate-dependent survival function Sx(t) as

Sx(t) = S0(t)exp(x′β). (1.9)
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In terms of hazards, this model is

hx(t) = exp(x′β)h0(t).

Note then that for two individuals with covariates x1 and x2, the ratio of hazard

curves is constant and proportional to hx1 (t)
hx2 (t) = exp{(x1 − x2)′β}, hence the name

“proportional hazards.” Cox (1972) is the second most cited statistical paper of

all time (Ryan and Woodall, 2005), and the PH model is easily the most popular

semiparametric survival model in statistics, to the point where medical researchers

tend to compare different populations’ survival in terms of instantaneous risk (hazard)

rather than mean or median survival as in common regression models. Part of the

popularity of the model has to do with the incredible momentum the model has

gained from how easy it is to fit the model through partial likelihood (Cox, 1975) and

its implementation in SAS in the procedure PHREG. The use of partial likelihood and

subsequent counting process formulation (Andersen and Gill, 1982) of the model has

allowed ready extension to stratified analyses, proportional intensity models, frailty

models, and so on (Therneau and Grambsch, 2000).

The first Bayesian semiparametric approach to PH models posits a gamma process

as a prior on the baseline cumulative hazard H0(t) =
∫ t

0 h0(s)ds (Kalbfleisch, 1978);

partial likelihood emerges as a limiting case (of the marginal likelihood as the precision

parameter approaches zero). The use of the gamma process prior in PH models,

as well as the beta process prior (Hjort, 1990), piecewise exponential priors, and

correlated increments priors are covered in Ibrahim et al. (2001) (pp. 47-94) and

Sinha and Dey (1997). Other approaches include what are essentially Bernstein

polynomials (Gelfand and Mallick, 1995; Carlin and Hodges, 1999) and penalized B-

splines (Hennerfeind et al., 2006; Kneib and Fahrmeir, 2007). The last two models

are available in the free software BayesX (Belitz et al., 2015) which can be called

from R via the packages R2BayesX and BayesX (Umlauf et al., 2015). The BayesX

functions allow for a general additive (including partially linear) PH model to be easily
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fit, including time-dependent covariates; BayesX also accommodates spatial frailties,

discussed in Section 1.4. PH models with Polya tree baselines were considered by

Hanson (2006a), Hanson and Yang (2007), Zhao et al. (2009), and Hanson et al.

(2009) and can be fit in the SpBayesSurv package for R.

Stratified PH model posits a separate hazard function across levels of strata s =

1, . . . , S,

hx,s(t) = exp(x′β)h0s(t).

A version of this model based on Bernstein polynomials is given by Carlin and Hodges

(1999); B-splines were considered by Cai and Meyer (2011). The stratified PH model

can also be fit using SAS PHREG assuming piecewise exponential priors, i.e. piecewise

constant baseline hazard functions. A version of the stratified model that SAS fits,

but with a “Polya tree” type prior on the hazard was considered by Dukić and Dig-

nam (2007). Note that BayesX can also fit stratified models based on B-splines by

including a time-varying regression effect for the categorical strata variable.

Accelerated failure time

An accelerated failure time (AFT) model is obtained by expressing the covariate-

dependent survival function Sx(t) as

Sx(t) = S0{exp(−x′β)t}. (1.10)

This is equivalent to the linear model for the log transformation of the corresponding

time-to-event response variable, T ,

log T = x′β + ε, (1.11)

where exp(ε) ∼ S0. The mean, median, and any quantile of survival for an individual

with covariates x1 is changed by a factor of exp{(x1 − x2)′β} relative to those with

covariates x2.
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An early frequentist least-squares teatment of the AFT model with right-censored

data is due to Buckley and James (1979); the Buckley-James estimator is implemented

in Frank Harrell’s Design library for R (Alzola and Harrell, 2006). The R packages

emplik and bujar have various extensions. More refined estimators followed in the

1990s (Ying et al., 1995; Yang, 1999) focusing on median-regression.

From a Bayesian nonparametric perspective, the first approach, based on a Dirich-

let process prior, obtained approximate marginal inferences to the AFT model (Chris-

tensen and Johnson, 1988); a full Bayesian treatment using the Dirichlet process is not

practically possible (Johnson and Christensen, 1989). Approaches based on Dirichlet

process mixture models have been considered by Kuo and Mallick (1997), Kottas and

Gelfand (2001) and Hanson (2006b). Dirichlet process mixtures “fix” the discrete

nature of the Dirichlet process, as do other discrete mixtures of continuous kernels.

We refer the reader to Komárek and Lesaffre (2007) for an alternative approach based

on finite mixtures of normal distributions, and Komárek and Lesaffre (2008) based

on an approximating B-spline, both available in the R package bayesSurv. Polya

tree priors that have continuous densities can directly model the distribution of ε

in expression (1.11) (Walker and Mallick, 1999; Hanson and Johnson, 2002; Hanson,

2006a; Hanson and Yang, 2007; Zhao et al., 2009). AFT models with Polya tree

baseline densities can be fit in the spBayesSurv package for R.

Although PH is by far the most commonly-used semiparametric survival model,

several studies have shown vastly superior fit and interpretation from AFT models

(Hanson and Yang, 2007; Hanson, 2006a; Kay and Kinnersley, 2002; Orbe et al., 2002;

Hutton and Monaghan, 2002). Cox pointed out himself (Reid, 1994) “... the physical

or substantive basis for ... proportional hazards models ... is one of its weaknesses

... accelerated failure time models are in many ways more appealing because of their

quite direct physical interpretation ...”. However, similar to the PH model, standard

AFT models also impose constraints so that survival curves from different covariate
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levels are not allowed to cross, which is unrealistic in many practical applications

(e.g., De Iorio et al., 2009). For these data that do not follow AFT assumptions, we

next discuss two generalizations of the AFT model that allow for crossing survival

and hazard curves. The two approaches are the linear dependent Dirichlet process

mixture, which can be interpreted as a mixture of parametric AFT models, and the

linear dependent tailfree process, which is an AFT model with very general baseline

functions that are covariate-dependent. Both augmentations are examples of “den-

sity regressions,” allowing the entire survival density fx(t) to change smoothly with

covariates x.

Linear dependent Dirichlet process

By considering a Dirichlet process mixture of normal distributions for the errors

in (1.11) (Kuo and Mallick, 1997), the distribution for the log survival time is the

distribution of εi, given by (1.5), shifted by the linear predictor ηi = x′iβ. Specifically,

yi|β, G
ind.∼

∞∑
j=1

wjN(µj + x′iβ, σ2
j ),

where G(·) = ∑∞
j=1wjδ(µj ,σ2

j )(·) is a Dirichlet process. The interpretation of the

components of β is as usual and the model can be fit using standard algorithms for

Dirichlet process mixture models (Neal, 2000).

The linear dependent Dirichlet process mixture (LDDPM) (De Iorio et al., 2009;

Jara et al., 2010, 2011; Zhou et al., 2015b) can be interpreted as a generalization of the

previous model, which arises by additionally mixing over the regression coefficients,

yielding a mixture of log-normal AFT models. Specifically, the LDDPM model is

given by

yi|G
ind.∼

∞∑
j=1

wjN(x′iβj, σ2
j ), (1.12)

where xi now includes a ‘1’ for the intercept, wi = Vi
∏
j<i(1 − Vj), with Vi|α

iid∼

Beta(1, α), and βj
iid∼ N(m0,V0) and σ−2

j
iid∼ Γ(a0, b0).
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The model trades easy interpretability offered by a single β for greatly increased

flexibility. In particular, the LDDPM model does not stochastically order survival

curves from different predictors xi1 and xi2 , and both the survival and hazard curves

can cross.

Linear dependent tailfree process

A Polya trees defines the conditional probabilities Yj+1,2k−1 and Yj+1,2k as beta dis-

tributions. However, one can instead define a logistic regression for each of these

probabilities, allowing the entire shape of the density to change with covariates; this

is the approach considered by Jara and Hanson (2011). Given covariates x, the lin-

ear dependent tailfree process (LDTFP) models (Yj+1,2k−1, Yj+1,2k) through logistic

regressions

log{Yj+1,2k−1(x)/Yj+1,2k(x)} = x′τ j,k,

where x includes an intercept. There are 2J − 1 regression coefficient vectors τ =

{τ j,k}; e.g. for J = 3, {τ 0,1, τ 1,1, τ 1,2, τ 2,1, τ 2,2, τ 2,3, τ 2,4}. Let X = [x1 · · ·xn]′

be the n × p design matrix. Following Jara and Hanson (2011), each is assigned an

independent normal prior, τj,k ∼ Np

(
0, 2

c(j+1)2 Ψ
)
. Jara and Hanson (2011) discussed

the case Ψ = n(X′X)−1, generating a g-prior Zellner (1983) for the tailfree regression

coefficients. By setting τ 0,1 ≡ 0, the resulting LDTFP is almost surely a median-zero

probability measure for every x ∈ X , important to avoid identifiability issues.

Augmenting (1.8), the random density is given by

gx(ε) = φ(ε)2J
J∏
j=1

Yj,d2jΦ(ε)e(x).

Since the {Yj,k} are modeled with logistic-normal distribution instead of beta, the

resulting random density is a tailfree process. The final AFT model with LDTFP

baseline is given by

yi = x′iβ + σεi, εi|τ
ind.∼ gxi . (1.13)
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Unlike the LDDPM, the LDTFP separates survival into one distinct trend x′β and an

evolving log-baseline survival density gx. By forcing gx to be median-zero, eβj gives

a factor by how median survival changes when xj is increased just as in standard

AFT models. This heightened interpretability in terms of median-regression in the

presence of heteroscedastic error allows a fit of the LDTFP model to easily relate

covariates x to median survival.

The LDTFP models the probability of falling above or below quantiles of the

N(x′β, σ2) distribution, but in terms of conditional probabilities. This model can

be viewed as a particular kind of quantile regression model. Koenker and Hallock

(2001) suggest that “...instead of estimating linear conditional quantile models, we

could instead estimate a family of binary response models for the probability that the

response variable exceeded some prespecified cutoff values.” However, Koenker and

Hallock (2001) prefer the linear (in covariates) quantile specification because “...it

nests within it the iid error location shift model of classical linear regression.” By

augmenting a median-zero tailfree process with a general trend x′β we accomplish

the same objective, nesting the ubiquitous normal-errors linear model within a highly

flexible median regression model, but with heteroscedastic error that changes shape

with covariate levels x ∈ X .

Both the LDDPM and the LDTFP model the entire density at every covariate

level x ∈ X , so full density and hazard estimates are available, accompanied by reli-

able interval estimates, unlike many median (and other quantile) regression models.

Both models are implemented as user-friendly functions calling compiled FORTRAN

in DPpackage or calling compiled C++ in spBayesSurv for R. These functions ac-

commodate general interval-censored data (including current status data); the latter

package also allows for spatial correlation. If only a trend function is desired one

could instead use quantile regression models, such as the ones implemented in the

excellent quantreg package in R (Koenker, 2008).
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Proportional odds

The proportional odds (PO) model has recently gained attention as an alternative to

the PH and AFT models. PO defines the survival function Sx(t) for an individual

with covariate vector x through the relation

Sx(t)
1− Sx(t) = exp{−x′β}

(
S0(t)

1− S0(t)

)
. (1.14)

The odds of dying before any time t are exp{(x1−x2)′β} times greater for those with

covariates x1 versus x2.

The first semiparametric approaches to PO models involving covariates are due

to Cheng et al. (1995), Murphy et al. (1997), and Yang and Prentice (1999). A semi-

parametric frequentist implementation of the PO model is available in the package

timereg (Martinussen and Scheike, 2006) for R. Bayesian nonparametric approaches

for the PO model have been based on Bernstein polynomials (Banerjee and Dey,

2005), B-splines (Wang and Dunson, 2011; Lin and Wang, 2011), and Polya trees

(Hanson, 2006a; Hanson and Yang, 2007; Zhao et al., 2009; Hanson et al., 2011).

The PH, AFT, and PO models all make overarching assumptions about the data

generating mechanism for the sake of obtaining succinct data summaries. An impor-

tant aspect associated with the Bayesian nonparametric formulation of these models

is that, by assuming the same, flexible model for the baseline survival function, they

are placed on a common ground (Hanson, 2006a; Hanson and Yang, 2007; Zhang and

Davidian, 2008; Zhao et al., 2009; Hanson et al., 2011). Furthermore, parametric

models are special cases of the nonparametric models. Differences in fit and/or pre-

dictive performance can therefore be attributed to the survival models only, rather

than to additional possible differences in quite different nonparametric models or

estimation methods.

Of the Bayesian approaches based on Polya trees considered by Hanson (2006a),

Hanson and Yang (2007), Zhao et al. (2009) and Hanson et al. (2011), the PO model
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was chosen over PH and AFT according to the log-pseudo marginal likelihood (LPML)

criterion (Geisser and Eddy, 1979). In three of these works, the parametric log-

logistic model, a special case of PO that also has the AFT property, was chosen.

This may be due to the fact that the PO assumption implies that hazard ratios

limt→∞
hx1 (t)
hx2 (t) = 1, that is, eventually everyone has the same risk of dying tomorrow.

These authors also found that, everything else being equal, the actual semiparametric

model chosen (PO, PH or AFT) affects prediction far more than whether the baseline

is modeled nonparametrically. It is worth noting that none of these papers favored

the semiparametric PH model in actual applications.

Other semiparametric models

PH, AFT, and PO are three of many semiparametric survival models used in practice.

There are a few more hazard-based models including the additive hazards (AH) model

(Aalen, 1980, 1989), given by

hx(t) = h0(t) + x′β,

which is implemented in the timereg package for R. An empirical Bayes approach

to this model based on the gamma process was implemented by Sinha et al. (2009).

Fully Bayesian approaches require an elaborate model specification to incorporate the

rather awkward constraint h0(t) + x′β ≥ 0 for t > 0 (Yin and Ibrahim, 2005; Dunson

and Herring, 2005). Recently, there has been some interest in the accelerated hazards

model (Chen and Wang, 2000; Zhang et al., 2011; Chen et al., 2014), given by

hx(t) = h0{exp(−x′β)t}.

This model allows hazard and survival curves to cross.

Finally, several interesting “super models” have been proposed in the literature,

including non-proportional hazard regression models that include PH as a special
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case (Devarajan and Ebrahimi, 2011), generalized odds-rate hazards models that

include PH and PO as special cases (Dabrowska and Doksum, 1988; Scharfstein et al.,

1998), Box-Cox transformation regression models that include PH and AH as special

cases (Yin and Ibrahim, 2005; Martinussen and Scheike, 2006), and extended hazard

regression models that include both PH and AFT as special cases (Chen and Jewell,

2001; Li et al., 2015b).

1.4 Spatial dependence

When survival data are spatially correlated, it is often of scientific interest to in-

vestigate possible spatial dependence in survival outcomes after adjusting for known

subject-specific covariate effects. Such spatial dependence is often due to region-

specific similarities in ecological and/or social environments that are typically not

measurable. We next discuss two general approaches, frailty and copula, for incorpo-

rating spatial dependence into the semiparametric models presented in Section 1.3,

followed by some other possibilities.

Spatial frailty modeling

Frailties have been frequently used to induce correlation among related survival times

in models which have a linear predictor. The linear predictor is augmented ηi =

x′iβ + vi, where vi is a random effect, termed “frailty,” accounting for heterogeneity

after adjusting for covariates. The so-called shared frailty models have one common

random effect within each group, e.g. vi = zgi where gi ∈ {1, . . . , G} is the group—e.g.

county, hospital, family—to which observation i belongs. Early literature considered

exchangeable frailties with z1, . . . , zG
iid∼ H, where H was constrained to be mean or

median zero to avoid confounding with the baseline function.

In the case of spatial survival data, one can extend the frailty model by including
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a spatial effect, e.g.,

ηi = x′iβ + γi, γi = vi + wi,

where the frailty term γi incorporates the effects of both heterogeneity (via the non-

spatial frailty vi) and spatial dependence (through the spatial frailty wi); note that,

however, in applications often only spatial dependence is modeled (γi = wi) or ex-

changeable dependence (γi = vi). Spatial frailty models have been widely discussed

in the literature and correspond to particular cases of hierarchical models. Such mod-

els are usually grouped into two general settings according to their underlying data

structure: point-referenced (geostatistical) data, where the location si varies contin-

uously throughout a fixed study region D, and areal (lattice) data, where the study

region is partitioned into a finite number of areal units with well-defined boundaries

(Banerjee et al., 2014).

Point-referenced data modeling

In modeling point-referenced data, the non-spatial frailty term vi is often specified

vi
iid∼ N(0, σ2), and the spatially correlated frailties w = (w1, . . . , wn) can be specified

to have a multivariate Gaussian distribution:

w ∼ Nn(0, θ2R), (1.15)

where Nn denotes the n-dimensional Gaussian distribution, θ2 measures the amount

of spatial variation across locations, and the (i, j)th element of R, denoted by Rij,

is the correlation between wi and wj. An isotropic correlation function is commonly

used to construct R, where the correlation of any two subjects is a function solely

of the distance dij between their locations si and sj, i.e., Rij = ρ(dij). A flexible,

frequently used correlation function is the Matérn

ρ(dij) = (φdij)νKν(φdij)
2ν−1Γ(ν) , (1.16)

20



www.manaraa.com

where Kν is a modified Bessel function of the third kind, φ > 0 measures the spatial

decay over distance, and ν > 0 is a parameter controlling the smoothness of the

realized random field. Interested readers are referred to Banerjee et al. (2014) for

further discussion of correlation functions. Note that the Matérn reduces to the

exponential ρ(dij) = exp(−φdij) for ν = 0.5 and the Gaussian ρ(dij) = exp(−φ2d2
ij)

when ν → ∞. Under the above prior specifications of exchangeable normal vi and

spatially correlated wi, the resulting multivariate Gaussian distribution on frailties

γ = (γ1, . . . , γn) is

γ ∼ Nn

{
0, θ2R + σ2I

}
. (1.17)

With this representation, the non-spatial effect variance σ2 is often called the nugget,

the spatial effect variance θ2 is called the partial sill, and the total effect variance

θ2 + σ2 is called the sill. The rationale of including the nugget effect is that we

don’t expect all remaining individual heterogeneity to be accounted for by the spatial

story, as other factors (e.g., measurement error, replication error, micro-scale error)

may also potentially explain the heterogeneity. In Henderson et al. (2002), the term

τ = θ2/(θ2 + σ2) is called the nugget effect and interpreted as the proportion of the

heterogeneity variance that is explained by spatial effects.

For posterior inference, MCMC requires computing the inverse and determinant

of n-dimensional correlation matrix R in each iteration. With an increasing sample

size n, such computation becomes very expensive and even unstable due to a large

amount of numerical operations. This situation is often referred to as “the big n

problem.” Various approaches have been developed to approximate the correlation

function such as predictive process models (Banerjee et al., 2008; Finley et al., 2009),

sparse approximations (Furrer et al., 2006; Kaufman et al., 2008), and the full scale

approximation (FSA) method (Sang and Huang, 2012). The last approximation is

the summation of the former two approximations, which can capture both large-

and small-scale spatial dependence. The FSA has been successfully applied to model
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point-referenced survival data in Zhou et al. (2015b, Chapter 3) and implemented in

the R package spBayesSurv.

Areal data modeling

In the case of areal data, the whole study region D is often partitioned into a finite

number of areas, say B1, . . . , BG, and a common frailty is assumed for the subjects

within each area, i.e.

ηi = x′iβ + γgi , γj = vj + wj, j = 1, . . . , G.

Here the non-spatial frailty vj for each area is typically assigned a mean-zero normal

distribution with variance σ2. For the spatial frailty term wj, there has been two

general approaches. First, one can assume a fully specified mean-zero multivariate

Gaussian distribution on w = (w1, . . . , wG) with covariance matrix θ2R, where Rij is

modeled using a traditional correlation function like the Matérn in (1.16) but with dij

representing the distance between two areal centroids. Another way is to consider an

intrinsic conditionally autoregressive (ICAR) model. Let aij = 1 if areas Bi and Bj

share a nontrivial border (i.e. a connected curve in R2 that is more than one point)

and aij = 0 otherwise; set aii = 0. Then the G × G matrix A = [aij] is called the

adjacency matrix for the region D. The ICAR prior is defined through the set of all

conditional distributions

wj|{wi : i 6= j} ∼ N
(
w̄j, θ

2/aj+
)
, j = 1, . . . , G, (1.18)

denoted w ∼ ICAR(1/θ2), where aj+ is the number of neighbors of area Bj, w̄j =
1
aj+

∑
i:aij=1wi is the sample mean of the aj+ values of the neighboring areal unit

frailties, and θ2/aj+ is the conditional variance. Note that the ICAR model induces

an improper joint density, and the constraint ∑G
j=1wj = 0 is commonly used to

avoid identifiability issues. Another common fix is to assume a proper CAR model
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by multiplying the conditional mean w̄j in (1.18) by a shrinkage scale parameter ρ,

where 0 ≤ ρ < 1; it is generally difficult to estimate ρ and θ2 simultaneously.

Related literature

Henderson et al. (2002) modeled the spatial structure of leukemia survival data using

both district-level and point-referenced frailty effects in the context of the PH model.

In their point-referenced analysis, a multivariate gamma distribution for (eγ1 , . . . , eγn)′

was constructed so that each marginal has a gamma distribution with mean 1 and

variance σ2 + θ2, and the correlation between eγi and eγj takes the form defined

in (1.17). In their district-level analysis, they considered a linear predictor with

individual frailties as ηi = x′iβ + γi, where eγi |µgi ∼ Γ (1/ξ, 1/(ξµgi)). They then

assumed a multivariate Gaussian distribution on the latent effects µ = (µ1, . . . , µG)

with the correlation function between the ith and jth district modeled via the powered

exponential and Matérn. They also considered the ICAR specification on µ and found

that the multivariate Gaussian via a Matérn correlation with ν = 2 had the best fit

based on the DIC goodness-of-fit criterion.

Pan et al. (2014) fitted the semiparametric PH model with ICAR frailties to inter-

val censored data with the baseline hazard function modeled via B-splines. Lin et al.

(2015) duplicated this model without the ICAR frailties. Using the same methodolo-

gy, a special case of interval-censored data, current-status data, was presented in Cai

et al. (2011). The aforementioned models can be fit in the ICBayes R package. Li

and Ryan (2002) modeled the district-level frailty effect using a fully specified mul-

tivariate normal prior within the framework of PH, and applied the model to detect

prognostic factors leading to childhood asthma. All of these approaches are essen-

tially a special case of the general models previously presented in Kneib (2006) and

Hennerfeind et al. (2006), which can be efficiently fit in the freely available program

BayesX or the R package R2BayesX; the latter package uses compiled code and places
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the B-spline prior on the log-hazard instead of the hazard. An advantage of the mod-

els fitted in BayesX is that both areal and point-referenced data are accommodated

as well as nonparametric additive effects. In addition, the R package spatsurv can

also fit the PH model with multivariate Gaussian frailties, where the baseline hazard

is modeled either parametrically or nonparametrically via B-splines.

Banerjee and Carlin (2003) developed a semiparametric PH frailty model for cap-

turing spatio-temporal heterogeneity in survival of women diagnosed with breast

cancer in Iowa, using a mixture of beta densities baseline. Banerjee et al. (2003)

applied the Weibull parametric PH frailty model to infant mortality data in Min-

nesota, where the county-level frailties were assumed to have either an uncorrelated

zero-mean Gaussian prior, an ICAR prior, or a fully specified multivariate Gaussian

prior as in (1.15). They showed that the fully specified prior provides the best model

fitting in terms of DIC in the analysis of the infant data. Banerjee and Dey (2005)

utilized the same frailty modeling technique for capturing spatial heterogeneity with-

in the framework of semiparametric PO, found that the proper CAR prior yielded

the best fit in the application to a subset of SEER breast cancer data. Zhao et al.

(2009) considered either an AFT, PH, or PO model with ICAR frailties, where the

baseline function was assumed to have a mixture of Polya trees prior. Zhang and Law-

son (2011) and Wang et al. (2012) developed parametric and semiparametric AFT

models with ICAR frailties, respectively. Chernoukhov (2013) extended the additive

hazards model for allowing various spatial dependence structures in his dissertation.

Zhou et al. (2015c, Chapter 4) extended the generalized model in (1.13) by allow-

ing frailties accommodating spatial correlation via the ICAR prior distribution. The

models proposed in Zhao et al. (2009) and Zhou et al. (2015c, Chapter 4) can be fit

in the R package spBayesSurv. Other references focusing on spatial frailty modeling

and its application include McKinley (2007), Diva et al. (2008), Darmofal (2009),

Liu (2012), Ojiambo and Kang (2013), Dasgupta et al. (2014), Li et al. (2015a), and
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among others.

Spatial copula modeling

Spatial copulas are just beginning to become popular in geostatistics. The use of cop-

ulas in the spatial context was first proposed by Bárdossy (2006), where the empirical

variogram is replaced by empirical copulas to investigate the spatial dependence struc-

ture. The spatial copula approach offers an appealing way to separate modeling from

the spatial dependence structure for multivariate distributions. Copulas completely

describe association among random variables separately from their univariate dis-

tributions and thus capture joint dependence without the influence of the marginal

distribution (Li, 2010). In the context of survival models, the idea of spatial copula

approach is to first assume that the survival time Ti at location si marginally fol-

lows a model Sxi(t) introduced in Section 1.3, then model the joint distribution of

(T1, . . . , Tn)′ as

F (t1, . . . , tn) = C(Fx1(t1), . . . , Fxn(tn)), (1.19)

where Fxi(t) = 1 − Sxi(t) is the cumulative distribution function and the function

C is an n-copula used to capture spatial dependence. If we let Ui = Fxi(Ti), then

the problem is reduced to constructing a copula for modeling the joint distribution

of U = (U1, . . . , Un). Hereafter we assume that Ui follows a uniform distribution on

[0, 1] for all locations si; i.e., the survival model Sxi(t) is assumed to be correctly

specified. In fact, copulas are all the joint cumulative distribution functions on the

unit hypercube with uniform marginal distributions. We refer interested readers to

Nelsen (2006) for general introduction to copulas and to Smith (2013) for Bayesian

approaches to copula modeling.

In the geostatistical framework, the multivariate spatial copula of U is often con-

structed so that for any selected two locations si and sj, the bivariate copula (i.e.,

joint distribution) of (Ui, Uj) does not depend on the locations si and sj but on their
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distance dij only. However, such construction is not a trivial task. Here we introduce

a spatial version of the Gaussian copula and refer readers to Li (2010) for further

discussion of other theoretical spatial copulas. Define Zi = Φ−1 {Ui}, where Φ(·) is

the standard normal cumulative distribution function, then we have Zi ∼ N(0, 1)

for all i. If we further assume that Z = (Z1, . . . , Zn)′ follows a multivariate normal

distribution with mean zero and covariance R, i.e., Z ∼ Nn(0,R), then the induced

joint distribution of U is called the Gaussian copula, which is given by

C(u1, . . . , un) = Φn

(
Φ−1{u1}, . . . ,Φ−1{un}; R

)
, (1.20)

where Φn(. . . ; R) denotes the distribution function of Nn(0,R). Note that all the

diagonal elements of R are ones, so we refer to R as the correlation matrix thereafter.

The Gaussian copula has a symmetrical density, which can be written as

c(u1, . . . , un) = |R|−1/2exp
{1

2z′(R−1 − I)z
}
, (1.21)

where z = (zi, . . . , zn)′ with zi = Φ−1 {ui} and I is the identity matrix. The s-

patial dependence structure of the Gaussian copula is induced by constructing the

correlation matrix R using classical geostatistical models. For example, the (i, j)th

element of R can be defined using the Matérn in (1.16) with a nugget effect τ , that

is, Rij = τρ(dij) for i 6= j, where 1 < τ < 1. Under the spatial Gaussian copula, the

joint density of (T1, . . . , Tn) takes the form

f(t1, . . . , tn) = |R|−1/2exp
{
−1

2z′(R−1 − In)z
} n∏
i=1

fxi(ti), (1.22)

where zi = Φ−1 {Fxi(ti)} and fxi(ti) is the density function of Ti. The use of spatial

copulas has not been widely applied for modeling survival data that are subject to

spatial correlation. Li and Lin (2006) successfully applied the spatial Gaussian copula

approach to a semiparametric PH model and proposed spatial semiparametric esti-

mating equations that yield consistent and asymptotically normal estimators. Zhou

et al. (2015b, Chapter 3) considered the LDDPMmarginal model given in (1.12) using
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the same Gaussian copula for capturing spatial dependence structure, where MCMC

algorithms were used to obtain posterior inferences. Zhou et al. (2015b, Chapter 3)

also provided a Bayesian version of the model considered in Li and Lin (2006) using

piecewise exponential baseline specifications. The R package spBayesSurv can fit

the aforementioned copula-based Bayesian survival models.

The spatial Gaussian copula approach can also be extended for fitting lattice

data, for which constructing the correlation matrix R of Z = (Z1, . . . , Zn) becomes

a challenging task. One may consider a random effects model for Z based on the

partition of the domain D into G districts, that is,

Zi = µgi + εi, µ ∼ NG(0,BΩB), εi ind∼ N

(
0, σ2

ωgigi + σ2

)
, gi ∈ {1, . . . , G}, (1.23)

where µ = (µ1, . . . , µG)′ are the random effects, Ω = [ωij] is a G × G matrix intro-

ducing spatial dependence to µ, B = diag
(
1/
√
ω11 + σ2, . . . , 1/

√
ωGG + σ2

)
, and εi

is the error term independent of the spatial random effects. Note that V ar(Zi) = 1.

Popular models for Ω include multivariate Gaussian coupled with a spatial covari-

ance function, ICAR, proper CAR and many others. Li et al. (2015b) derived the

implied correlation matrix R = cov(Z) under the ICAR model, which only involves

one unknown quantity ψ∗. A smaller value of ψ∗ corresponds to stronger spatial de-

pendence. With the specification of R, one can model joint cumulative distribution

function of (T1, . . . , Tn) by

F (t1, . . . , tn) = Φn

(
Φ−1{Fxi(ti)}, . . . ,Φ−1{Fxn(tn)}; R

)
. (1.24)

Other spatial dependence modelings

Zhao and Hanson (2011) considered a stratified PH model:

Sxi = S0gi(t)exp(x′iβ), gi ∈ {1, . . . , G},

where each region-specific baseline S0j(·) approximately follows a mixture of Polya

trees prior centered at a parametric log-logistic family. The spatial dependence a-
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mong the {S01(·), . . . , S0G(·)} is induced through proper CAR priors on the logit

transformed Polya tree conditional probabilities {Yl,k}. Hanson et al. (2012) extend-

ed this idea to fit a Bayesian semiparametric temporally stratified PH model with

spatial frailties. Stratified AFT models with ICAR areal frailties are considered by

Zhou et al. (2015c, Chapter 4).

In modeling areal data, spatial dependence is often due to unadjusted district-level

risk factors that may potentially relate to survival outcomes. Zhao and Hanson (2011)

note that spatial frailties serve as proxies to unmeasured region-level covariates, but

are less-precise adjustments since region-level covariates (such as shortest distance to

a clinic) are unlikely to sharply change at areal boundaries. Therefore it is natural to

introduce spatial dependence by allowing frailties to depend on region-level covariates,

especially when information is available on each region that may affect the survival

outcome beyond the recorded covariates. For this reason, Zhou et al. (2015a, Chapter

2) proposed a region-level covariate adjusted frailty PH model. Specifically, with the

linear predictor ηi = x′iβ + γgi , they assume an LDTFP prior on the frailties, i.e.,

γj|zj ∼ gzj(·), where zj is a vector of region-level covariates. This model can be fit

in the DPpackage for R.

1.5 Illustrations

Both of the frailty and copula modeling approaches are illustrated using real-life

datasets. All the analyses are implemented using the R packages spBayesSurv. The

fitted models are compared in terms of the log pseudo marginal likelihood (LPML)

developed by Geisser and Eddy (1979). Note that the frailties used in frailty models

are either exchangeable vi or spatial wi, but not both vi + wi.
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SEER cancer data

The Surveillance Epidemiology and End Results (SEER) program of the National

Cancer Institute (seer.cancer.gov) is an authoritative source of information on

cancer incidence and survival in the US, providing county-level cancer data on an

annual basis for particular states for public use. Areal-referenced SEER data have

been analyzed by many authors in the context of spatial frailty models (e.g., Banerjee

and Carlin, 2003; Banerjee and Dey, 2005; Zhao et al., 2009; Zhao and Hanson, 2011;

Wang et al., 2012; Zhou et al., 2015a,c).

For illustration, we analyze a subset of the Iowa SEER breast cancer survival

data, which consists of a cohort of 1073 Iowan women, who were diagnosed with

malignant breast cancer starting in 1995, and enrollment and follow-up continued

through the end of 1998. This data set has been analyzed in Zhao et al. (2009), and

Zhou et al. (2015a, Chapter 2). The observed survival time, from 1 to 48, is defined

as the number of months from diagnosis to either death or the last follow-up. Here

we assume that only deaths due to metastasis of cancerous nodes in the breast are

events, while the deaths from other causes are censored at the time of death. The

right-censoring rate is 54.5%. For each patient, the observed survival time and county

of residence at diagnosis are recorded. The considered individual-level covariates

include age at diagnosis and the stage: local, regional, or distant, where two dummy

variables are created for regional and distant, respectively, and the reference group is

local. Zhou et al. (2015a, Chapter 2) point out that some county-level socioeconomic

factors (e.g., median household income, poverty level, education, rurality) are also

potentially associated with breast cancer and argue that rural counties present more

heterogeneity in access to quality care and screening for breast cancer. Therefore,

we also include a county-level covariate “Rural-Urban Continuum Codes” (RUCC)

measuring degree of urbanization; see Zhou et al. (2015a, Chapter 2) for a detailed

description.
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Table 1.1 SEER breast cancer data: Posterior medians (95% credible intervals) of
fixed effects from various models. Note the AFT model is parameterized as
Sx(t) = S0(ex′βt).

Model Centered age Regional stage Distant stage RUCC
PH/CAR 0.019 (0.013, 0.025) 0.26 (0.03, 0.48) 1.69 (1.45, 1.93) -0.069 (-0.136, 0.002)
AFT/CAR 0.018 (0.011, 0.023) 0.22 (0.01, 0.43) 1.51 (1.26, 1.75) -0.045 (-0.105, 0.013)
PO/CAR 0.030 (0.021, 0.038) 0.40 (0.12, 0.69) 2.59 (2.25, 2.95) -0.087 (-0.174, -0.001)
PH/LDTFP 0.019 (0.013, 0.025) 0.27 (0.03, 0.49) 1.64 (1.43, 1.88) -0.105 (-0.185, -0.041)

We fit each of the PH, AFT, and PO frailty models with a mixture of Polya trees

prior on baseline survival S0(t) and the ICAR prior on the frailties γ ∼ ICAR(λ),

where the PH is centered at the Weibull Gθ(t) = 1−exp
{
−(eθ1t)exp(θ2)

}
and the AFT

and PO are centered at the log-logistic Gθ(t) = 1−{1 + (eθ1t)exp(θ2)}−1. We consider

the following prior settings: J = 4, c ∼ Γ(5, 1), θ ∼ N2(θ̂, V̂), β ∼ Np(β̂, 30Σ̂)

and λ ∼ Γ(1, 1), where θ̂, β̂, V̂, and Σ̂ are maximum likelihood estimates from the

underlying parametric model. Using the same priors, we also fit the above models

with Gaussian exchangeable frailties and without frailties. For all models considered,

a burn-in of 100, 000 iterations is followed by a run of 100, 000 thinned down to 10, 000

iterations. All these models are fitted using the survregbayes function available in

the package spBayesSurv.

The LPML values under ICAR frailty PH, AFT, and PO are −2226, −2228, and

−2210, respectively, while the corresponding LPMLs are −2230, −2224 and −2214

under exchangeable frailty models and are −2230, −2228, and −2214 under non-

frailty models. We can observe that the ICAR frailty model has the best predictive

ability within the context of either PH or PO, and the exchangeable frailty model

performs best in terms of LPML under the AFT. Table 1.1 presents posterior means

and equal-tailed 95% credible intervals (CI) for covariate effects under each of above

model with ICAR frailties. All individual covariate effects are significant in each

model. Higher age at diagnosis increases the hazard; e.g. a twenty-year increase in

age is associated with an exp(0.019×20) ≈ 1.46-fold increase in hazard. Using women

with local stage of disease as the reference, the hazard rate of women of the same age
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who live in the same county will be exp(0.26) ≈ 1.30 times larger if their cancer is

detected at the regional stage, and exp(1.69) ≈ 5.42 times larger if detected at the

distant stage. Under the AFT assumption, among patients living in the same county

and having same age, a woman with local stage typically survives exp(0.22) ≈ 1.25

times longer than a woman with regional stage, and exp(1.51) ≈ 4.53 times longer

than a woman with distant stage. Finally, for the PO model, after adjusting for the

age at diagnosis and the RUCC, the odds of dying from breast cancer before any

time t are exp(0.40) ≈ 1.49 greater for regional stage versus local stage, and are

exp(2.59) ≈ 13.33 greater for distant stage versus local stage. These findings are

confirmed in Figure 1.1, which shows the fitted survival functions for women aged at

68.8 years and living a county with RUCC at 5 for distant and local stages under

the three competing models and assuming a spatial frailty of zero. Turning to the

county-level RUCC effect, only the PO model provides a significant result at the 0.05

level; living in more urban counties is associated with poorer survival after a breast

cancer diagnosis on average.

Zhou et al. (2015a, Chapter 2) fitted a PH model with LDTFP frailty terms using

the package DPpackage and found more variability for frailties of rural counties. The

resulting LPML is −2222 when RUCC is included into both the linear predictor

and frailty terms. The pseudo Bayes factor for the LDTFP frailty model versus the

ICAR frailty PH model is exp(2226− 2222) ≈ 55, implying that the allowing frailties

depending on RUCC improves the model’s predictive ability about 55 times. Table 1.1

also shows the covariate effects under the LDTFP frailty PH model. An interesting

finding is that now the RUCC effect becomes significant at the 0.05 level. This

may be due to the fact that frailty distributions are covariate-dependent as shown in

Figure 1.1(b). After controlling for individual covariates and county, the hazard rate

of women living in urban counties (with RUCC = 2) will be exp(0.105×7) ≈ 2 times

larger than that of women in rural counties (with RUCC = 9).
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Figure 1.1 SEER breast cancer data. Panels (a), (c), and (d) show estimated
survival curves for women aged at 68.8 years and living a county with RUCC at 5
for distant (dashed lines) and local (dotted lines) stages, under PH, AFT, and PO,
respectively. The pointwise 95% credible bands are also displayed as grey areas.
Panel (b) displays frailty densities for RUCC=2, 5, and 9, which are displayed as
dashed, continuous, and dotted lines, respectively.

Leukemia data

We consider a dataset on the survival of acute myeloid leukemia in n = 1, 043 patients,

analyzed by Henderson et al. (2002) fitting a multivariate gamma frailty PH model.

This dataset is available for access in Fahrmeir and Kneib (2011). It is of interest to

investigate possible spatial variation in survival after accounting for known subject-

specific prognostic factors, which include age, sex, white blood cell count (WBC) at

diagnosis, and the Townsend score, for which higher values indicate less affluent areas.

The censoring rate is 16%. Both exact residential locations of all patients and their
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administrative districts (24 districts that make up the whole region) are available.

Therefore, we can fit both geostatistical and lattice models.

For the geostatistical case, we fit the copula model (1.19) proposed by Zhou et al.

(2015b, Chapter 3) using the function spCopulaDDP, where the marginal model Fx(·)

is defined via the LDDPM in (1.12) and the copula function C is specified through the

Gaussian spatial copula in (1.20) assuming the exponential correlation function. We

then use the function spCopulaCoxph to fit the copula model assuming a piecewise

exponential PH model for Fx(·), where the partition is based on J = 20 cut-points

with each ak defined as the k
J
th quantile the empirical distribution of observed survival

times (see Section 1.2). For comparison, standard non-spatial LDDPM and piecewise

exponential PH models are also fitted using the functions anovaDDP and indeptCoxph,

respectively. The default priors are considered for above models as suggested in Zhou

et al. (2015b, Chapter 3). Regarding the lattice case, we fit each of the Polya trees

PH, AFT, and PO models with ICAR frailties as in Section 1.5 using the function

survregbayes and their corresponding non-frailty models, where the Polya trees are

truncated at level J = 5. Finally, we fit the generalized AFT model (1.13) with and

without ICAR frailties using the function frailtyGAFT, where εi is allowed to depend

on age and WBC. We refer readers to Zhou et al. (2015c, Chapter 4) for discussion of

prior specifications and posterior samplings. For all models, we retain 10, 000 scans

thinned from 50, 000 after a burn-in period of 10, 000 iterations.

The LPML measures for the copula with LDDPM, copula with piecewise expo-

nential PH, PH, AFT, and PO with Polya trees baselines and ICAR frailties, and

generalized AFT with ICAR frailties are −5932, −5939, −5930, −5953, −5925, and

−5936, respectively. Without spatial components, the above LPML values become

−5934, −5941, −5934, −5950, −5925, and −5942. The PO models significantly

outperform others from a predictive point of view regardless of whether spatial de-

pendence is taken into account. Within the context of LDDPM and PH, the use of
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the Gaussian spatial copula slightly improves the model’s predictive ability, indicating

that the spatial dependence is relatively weak in this dataset. Under the framework

of PH, the Polya trees prior works much better than piecewise exponential prior for

modeling baseline functions. The AFT models provide the worst LPML values, while

allowing the baseline varying with covariates (i.e., generalized AFT) can significantly

improve the models’ predictive ability; the Bayes factors for age and WBC effects on

the baseline survival are 124 and 23, respectively under the ICAR frailty model, and

are 73 and 31 under the non-frailty model.

For the copula LDDPMmodel, the posterior median of the nugget effect parameter

θ1 is 0.051 with the 95% CI (0.000, 0.176), indicating that only 5% of the heterogeneity

variance is explained by spatial effect on average. The posterior median of θ2 is 0.831

with the 95% CI (0.001, 3.075) indicates that the correlation decays by 1− e−0.831 ≈

56% for every kilometer increase in distance on average. However, given such a small

value θ1, the spatial decay becomes less important. Figure 1.2(a) shows the survival

curves under the PO ICAR frailty model for female patients aged at 49 (25%th

quantile) and aged at 74 (75%th quantile) holding other covariates at population

averages, where we see that higher age is associated with lower survival probability.

Figure 1.2(b) shows the baseline survival curves under the generalized AFT ICAR

frailty model for female patients aged at 49 and aged at 74 holding WBC at its

population average, where we can see that the baseline varies with age which clearly

violates the AFT assumption.

1.6 Concluding remarks

We have reviewed commonly-used priors on baseline functions, semiparametric and

nonparametric Bayesian survival models, and recent approaches for accommodating

spatial dependence, both frailty and copula. Many R packages are discussed for

implementation including DPpackage, spBayesSurv, R2BayesX, and spatsurv. Two
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Figure 1.2 Leukemia data. Panel (a) shows estimated survival curves for women
aged at 49 years (dotted lines) and aged at 75 years (dashed lines), holding other
covariates at population averages and frailties at zeros, under the PO model with
ICAR frailties. Panel (b) shows estimated baseline survival curves for women aged
at 49 years (dotted lines) and aged at 75 years (dashed lines), holding WBC at its
population average and frailties at zeros, under the generalized AFT with ICAR
frailties. The pointwise 90% credible bands are also displayed as grey areas.

interesting data sets are illustrated, where both analyses show that PO models per-

form significantly better than all other models we considered including the PH, AFT,

and two generalizations of AFT.
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Chapter 2

Covariate-adjusted Frailty Proportional

Hazards Model1

Understanding the factors that explain differences in survival times is an

important issue for establishing policies to improve national health sys-

tems. Motivated by breast cancer data arising from the Surveillance Epi-

demiology and End Results program, we propose a covariate-adjusted pro-

portional hazards frailty model for the analysis of clustered right-censored

data. Rather than incorporating exchangeable frailties in the linear pre-

dictor of commonly-used survival models, we allow the frailty distribu-

tion to flexibly change with both continuous and categorical cluster-level

covariates and model them using a dependent Bayesian nonparametric

model. The resulting process is flexible and easy to fit using an existing R

package. The application of the model to our motivating example showed

that, contrary to intuition, those diagnosed during a period of time in the

1990s in more rural and less affluent Iowan counties survived breast can-

cer better. Additional analyses showed the opposite trend for earlier time

windows. We conjecture that this anomaly has to be due to increased

hormone replacement therapy treatments prescribed to more urban and

affluent subpopulations.

1This is a reprint of the original article “Zhou, H., Hanson, T., Jara, A., and Zhang, J. (2015).
Modeling county level breast cancer survival data using a covariate-adjusted frailty proportional
hazards model. The Annals of Applied Statistics, 9, 43-68. Reprinted here with permission of the
Institute of Mathematical Statistics.
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2.1 Introduction

Based on data gathered for Iowa State in the Surveillance Epidemiology and End

Results (SEER) program of the National Cancer Institute, we assess the effect of

potential risk factors for womens’ breast cancer. This involves the analysis of clus-

tered time-to-event right-censored data, where event times of patients from the same

county of residence are expected to be associated with each other, possibly due to

sharing common unobserved characteristics, such as region-specific differences in en-

vironments, treatment resources or diagnosis of the patients. As is widely known,

taking into account the clustered nature of the data is a must to obtain valid statis-

tical inferences (see, e.g., Therneau and Grambsch, 2000, Chapter 8).

A standard way of modeling clustered survival data is to introduce a common

random effect (frailty) into the survival model for each cluster, yielding shared frailty

models. “Frailties,” termed by Vaupel et al. (1979), were originally introduced to

deal with possible heterogeneity due to unobserved covariates and are regarded as

unobserved common characteristics for each cluster able to account for the depen-

dence among event times. In the context of the proportional hazards (PH) model,

as conventionally implemented, frailties are incorporated into the linear predictor,

and the median or mean of the frailty distribution is constrained to be zero to avoid

identifiability problems. Conditional on the frailty, the model retains its interpreta-

tion in terms of constants of proportionality of the hazards. Survival models with

frailties have been extensively used in the statistical literature, especially when the

comparison of event times within cluster is of interest.

A common assumption in shared frailty survival models is the one of homogeneity,

where the frailties are assumed to be independent and identically distributed (iid)

37



www.manaraa.com

random variables from a parametric or nonparametric distribution (see, e.g., Clayton

and Cuzick, 1985; Gustafson, 1997; Qiou et al., 1999; Walker and Mallick, 1997).

Although the nonparametric approach provides flexibility in capturing a frailty dis-

tribution’s variance, skewness, shape and even modality, it essentially assumes that

these frailty distributional aspects are the same across all the clusters, which may

be restrictive for particular data sets (Noh et al., 2006). For example, in the kid-

ney transplantation study, Liu et al. (2011) argue that the frailty distribution may

be affected by some cluster-level covariates, since “...urban transplant facilities may

exhibit more uniform practices than rural transplant hospitals, corresponding to less

heterogeneity (smaller variance) for frailties of urban centers...”. Ignoring such het-

erogeneity can drastically affect the inference for cluster-specific effects and prediction

(McCulloch and Neuhaus, 2011).

As the process generating the frailty terms is on its own right of scientific in-

terest, different extensions of the iid frailty modeling approach have been consid-

ered. Wassell and Moeschberger (1993) studied the impact of interventions in the

Framingham Heart Study by introducing a modified gamma frailty with a pairwise

covariate-dependent parameter. Yashin and Iachine (1999) considered the depen-

dence between frailty and observed covariates (BMI and smoking) in Danish twins

to investigate the heritability of susceptibility to death. Noh et al. (2006) verified

frailty distribution heterogeneity in a well-known kidney infection data set by apply-

ing a dispersed normal model. Cottone (2008) assumed either Bernoulli or normal

distributions for the frailties where the frailty distribution mean or variance depends

on cluster-level covariates through specified link functions. Liu et al. (2011) pro-

posed a covariate-dependent positive stable shared frailty model with an application

to kidney transplantation data from the Scientific Registry of Transplant Recipients,

and demonstrated the heterogeneity in facility performance. Wang and Louis (2004)

studied a related approach for binary data that has both conditional and marginal
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interpretation using the so-called bridge distribution instead of positive stable.

The previously described model extensions allow for particular and specific aspects

of distributional shape to change with cluster-level covariates. However, a more thor-

ough evaluation of the effect of the predictors should account for potential changes

in characteristics of the frailty distribution other than just, for example, the location

or scale. It is, for instance, useful to examine potential changes in the skewness,

symmetry, and multimodality of the frailty distribution. Therefore, a nonparamet-

ric formulation that anticipates changes in shape, skew and modality beyond simple

location models is of interest.

In this paper, we propose a practicable and general framework for modeling

clustered survival data as a function of covariates, based on a predictor-dependent

Bayesian nonparametric model for the frailties and the Cox’s PH model. Under the

proposed approach the frailty distribution flexibly changes with both continuous and

categorical cluster-level covariates, thus allowing for full heterogeneity across clusters.

We apply this modeling approach to a subset of the SEER county-level breast cancer

data consisting of 1073 women diagnosed with malignant breast cancer during 1995-

1998. Important patient-level covariates include age at diagnosis, race, county of

residence and the stage of the disease. Additional county-level covariates potentially

associated with breast cancer survival are also available from census data, including

median household income, poverty level, education and a rurality measure. These

area-level socioeconomic factors have been discovered to be associated with breast

cancer by many researchers (e.g., Sprague et al., 2011). Women living in more afflu-

ent or less rural geographic areas tend to survive breast cancer better after a diagnosis

than those living in regions with indicators of low socioeconomic status. Moreover,

rural counties may present more heterogeneity in access to quality care and screening

for breast cancer, leading to more variability for frailties of rural counties (Zhao and

Hanson, 2011). This suggests to us that the frailty distribution could be potential-
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ly affected by these county-level socioeconomic factors. The results show that the

proposed model provides better goodness of fit to the data and is predictively supe-

rior to the traditional PH spatial frailty model, as well as helping to piece together

a plausible story for the data in terms of the prescribing of hormone replacement

therapy.

The paper is organized as follows. In Section 2 we introduce the proposed frailty

PH model, including a detailed description of the dependent Bayesian nonparametric

model and the Markov chain Monte Carlo (MCMC) implementation of the posterior

computations. Section 3 provides a detailed analysis of the motivating data set.

Section 4 presents the results of simulation studies to evaluate the performance of the

proposed model. Some concluding remarks and a final discussion are given in Section

5.

2.2 Covariate-adjusted frailty proportional hazards model

The modeling approach

Suppose that right-censored survival data (wij, tij, δij) are collected for the jth subject

of the ith cluster, where j = 1, . . . , ni, i = 1, . . . , n, wij is a p-dimensional vector of

exogenous covariates, tij is the recorded event time, and δij is the censoring indicator

equaling 1 if tij is an observed event time and equaling 0 if the event time is right-

censored at tij. Let Tij and Cij be the event and censoring times respectively for the

jth subject in the ith cluster. To take into account the within-cluster association

structure, a frailty PH model is assumed for Tij. The conditional PH assumption

implies that the hazard function of Tij is given by

λ(t|wij, ei) = λ0(t) exp(w′ijξ + ei), (2.1)

where e = (e1, . . . , en)′ is an unobserved vector of frailties, and λ0(t) is the baseline

hazard function corresponding to the event time of a subject with covariates w = 0
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and e = 0. We additionally assume a conditionally independent censoring scheme,

that is, Cij and Tij are independent given wij and ei. Often the frailties are assumed

to be exchangeable or iid from some parametric or nonparametric distribution G.

For instance, Therneau et al. (2003) considered exchangeable Gaussian frailties and

proposed an estimation procedure based on a Laplace approximation of the likelihood

function leading to a penalized partial likelihood. This approach, referred to below

as GF, will be compared with our method in the simulation studies.

Now consider a partition of the predictor vector wij = (w̃′ij,x′i)′, where xi ∈ X ⊆

Rq is a q-dimensional vector of cluster-level covariates and w̃ij is a (p−q)-dimensional

vector of subject-specific covariates, respectively, and the corresponding partition of

the regression coefficient vector ξ = (ξ̃′, ξ′x)′. On the scale of the linear predictor

w′ijξ + ei, the frailty ei models the cluster-specific behavior and its distribution G

is shifted by x′iξx. Therefore, the homogeneity assumption implies that the vector

of cluster-level covariates xi modifies only the location of the distribution of cluster-

specific effects but not its shape. To relax this assumption, we consider a covariate-

adjusted frailty PH model, where the frailty distribution depends on cluster-level

covariates xi. That is,

ei | Gxi
ind.∼ Gxi ,

where for every x ∈ X , Gx is a probability measure defined on R; this specifies

a probability model for the entire collection of probability measures GX = {Gx :

x ∈ X}, such that its elements are allowed to smoothly vary with the cluster-level

covariates x. Specifically, we consider a mixture of linear dependent tailfree processes

(LDTFP) prior (Jara and Hanson, 2011) for GX , denoted as

GX | J, h, θ, c, ρ ∼ LDTFP(h,ΠJ,θ,AJ,c,ρ),

and

c | Q ∼ Q,
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where J ∈ N is the level of specification of the process, c ∈ R+ is a prior precision

parameter controlling the prior variability of the process, h(·) = exp{·}
1+exp{·} , ΠJ,θ is a

J-level sequence of binary partitions of R, depending on the scale parameter θ ∈ R+,

AJ,c,ρ = {2n/cρ(1), . . . , 2n/cρ(J)} is a collection of positive numbers depending on

J , c and ρ, ρ : N −→ R+ is an increasing function, and Q is a probability measure

defined on R+.

The LDTFP is specified such that for every x ∈ X , the process Gx is centered

around an N(0, θ) distribution, that is, E(Gx) = N(0, θ), for every x ∈ X . Fur-

thermore, the process is specified such that for every x ∈ X , Gx is almost surely

a median-zero probability measure. The latter property is important to avoid i-

dentifiability problems. The LDTFP process includes as important special cases a

nonparametric exchangeable frailty model where Gx = Gx′ for x′ 6= x as well as

exchangeable normal frailties Gx = N(0, θ) for all x ∈ X .

As shown by Jara and Hanson (2011), dependent tailfree processes have appealing

theoretical properties, such as continuity as a function of the predictors, large support

on the space of conditional density functions, straightforward posterior computation

relying on algorithms for fitting generalized linear models, and the process closely

matches conventional Polya tree priors (see, e.g., Hanson, 2006a) at each value of the

predictor, which justify its choice here. Polya trees have been extensively studied in

the literature and have desirable properties in terms of support and posterior con-

sistency. Details on the trajectories of LDTFP(h,ΠJ,θ,AJ,c,ρ), useful for a complete

implementation of algorithms for exploring the corresponding posterior distributions,

are given in Appendix A.1.

Other dependent processes could be considered for GX , but a highly limiting re-

quirement is that some aspect of the location, for example, mean or median, can be

fixed. There are few examples where the process changes smoothly with covariates;

one is the multivariate beta process of Trippa et al. (2011). Another approach using
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Dirichlet process mixtures can be found in Reich et al. (2010), but this latter ap-

proach would have to be extended to allow the means or variances of the two mixture

components to change with covariates.

Posterior computation

The conditional likelihood for (ξ, λ0, e) is given by

L(ξ, λ0, e) =
n∏
i=1

ni∏
j=1

[
λ0(tij) exp(w′ijξ + ei)

]δij exp
{
−Λ0(tij) exp(w′ijξ + ei)

}
,

where Λ0(t) =
∫ t

0 λ0(s)ds is the cumulative hazard function. The piecewise exponen-

tial model provides a flexible framework to deal with the baseline hazard (see, e.g.,

Walker and Mallick, 1997). We partition the time period R+ into K prespecified

intervals, say Ik = (ak−1, ak], k = 1, . . . , K, where a0 = 0 and aK = max{tij}. The

baseline hazard is assumed to be constant within each interval, that is,

λ0(t) =
K∑
k=1

λkI{t ∈ Ik},

where λ1, . . . , λK are unknown hazard values and I{A} is the usual indicator function,

that is, 1 when A is true, 0 otherwise. The prior hazard is specified by the hazard

values {λk}Kk=1 and cut-point vector a = (a1, . . . , aK). If the prior on the λks is

taken to be independent gamma distributions and {Ik}Kk=1 is a reasonably fine mesh,

the gamma process (Kalbfleisch, 1978) is approximated. To determine the cut-point

vector a, one can set ak to be the k
K
th quantile of the empirical distribution of the

tijs, or choose them based on other considerations (See Section 2.3). Some authors

have considered random cut-points (see, e.g., Sahu and Dey, 2004). Regardless, the

resulting model implies a Poisson likelihood (Laird and Olivier, 1981) as follows. Let

K(t) = min{k : ak ≥ t}, ∆k(t) = min{ak, t} − ak−1, and yijk = δijI{k = K(tij)}. Set

zijk = (ι′k,w′ij)′ and γ = (λ′, ξ′)′, where ιk is a K-dimensional vector of zeros except

the kth element is 1 and λ = (log(λ1), . . . , log(λK))′. Then the likelihood for (γ, e)
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becomes

L(γ, e) =
n∏
i=1

ni∏
j=1

[
exp

{
log(λK(tij)) + w′ijξ + ei

}]δij K(tij)∏
k=1

e− exp{log(λk)+w′ijξ+ei}∆k(tij)


=

n∏
i=1

ni∏
j=1

K(tij)∏
k=1

[(
exp

{
z′ijkγ + ei

})yijk
e− exp{z′ijkγ+ei+log(∆k(tij))}

]

∝
n∏
i=1

ni∏
j=1

K(tij)∏
k=1

p(yijk|γ, ei),

where µijk = exp
{
z′ijkγ + ei + log(∆k(tij))

}
and p(yijk|γ, ei) is the probability mass

function for a Poisson distribution with mean µijk. For each i = 1, . . . , n, let Ni =∑ni
j=1K(tij), yi = (yijk) be an Ni × 1 vector with subscript ijk in lexicographical

order.

Thus the proposed covariate-adjusted frailty PH model takes the following hier-

archical structure:

yi|γ, ei ind∼
ni∏
j=1

K(tij)∏
k=1

p(yijk|γ, ei),

γ ∼ NK+p(γ0,S0),

ei|Gxi
ind.∼ Gxi ,

GX | J, h, θ, c, ρ ∼ LDTFP(h,ΠJ,θ,AJ,c,ρ),

θ−2 ∼ Γ(τ1, τ2), c ∼ Γ(ac, bc),

which largely simplifies computations, where Np(m,S) refers to a p-variate normal

distribution with mean m and covariance matrix S. This forms the basis of an efficient

Markov chain Monte Carlo (MCMC) scheme for obtaining posterior inference, which

can be implemented using available software for generalized linear mixed models. A

full description of the MCMC algorithm is given in Appendix A.2. Sample R code

using the LDTFPglmm function available in DPpackage (Jara et al., 2011) is provided

in Appendix A.3.

Time-dependent subject-specific covariates that are step-processes (Hanson et al.,

2009) are naturally accommodated by including the times where the covariate values
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change across all subjects into the cut-point vector a. All that is changed above

is zijk = (ι′k,w′ijk)′, that is, wij is replaced with its time-varying analogue wijk.

Similarly, time-varying regression effects can be included by replacing z′ijkγ with

z′ijkγk in µijk, yielding very general models. The proposed model implies exchangeable

frailties for each subgroup with a unique x ∈ X . Time-dependent cluster-specific

covariates are therefore naturally included in the model by simply allowing x to

change with time. For example, in the SEER data set analyzed over a larger time

window, for subjects living in the ith county, one could include into xi the median

house income of that county at their particular diagnosis year. Furthermore, the

frailty distribution can itself evolve in time by simply including time as a covariate

in x, or a time-by-cluster covariate interaction could also be entertained.

2.3 Analysis of SEER county level breast cancer data

The Iowa SEER data

The SEER program of the National Cancer Institute (see http://seer.cancer.

gov/) is an authoritative source of information on cancer incidence and survival in

the US, providing county-level cancer data on an annual basis for particular states

for public use. We fit our proposed covariate-adjusted frailty Cox’s PH model to a

subset of the Iowa SEER breast cancer survival data, which consists of a cohort of

1073 women from the 99 counties of Iowa, who were diagnosed with malignant breast

cancer in 1995, with enrollment and follow-up continued through the end of 1998.

The observed survival time, from 1 to 48, was calculated as the number of months

from diagnosis to either death or the last follow-up. In our analysis, only deaths due

to metastasis of cancerous nodes in the breast were considered to be events, while the

deaths from other causes were censored at the time of death. That is, we consider

cause-specific survival models assuming that all other deaths are independent of breast
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cancer. By the end of 1998, a total of 488 patients (45.5%) had died of breast cancer,

while the remaining 585 patients were censored, either because they died of other

causes or survived until the last follow-up.

For each patient, the observed survival time and county of residence at diag-

nosis are recorded. The data set also has individual-level covariates including age

at diagnosis and the stage of the breast cancer: local (confined to the breast), re-

gional (spread beyond the breast tissue), or distant (metastasis). We create two

dummy variables for regional and distant, respectively, and treat the patients in the

local group as the baseline. Although several individual-level covariates that affect

breast cancer survival are not available (e.g., age at first child, age at menopause

and breastfeeding), we are able to obtain county-level covariates potentially asso-

ciated with breast cancer survival from census data, such as median household in-

come (small area estimates in 1993), poverty level (percentage of families in poverty

in 1990), education (percentage with Bachelor’s degree or higher in 1990) and ru-

rality (Rural-Urban Continuum Codes in 1993). The Economic Research Service

Rural-Urban Continuum Codes (RUCC) vary from 1 to 9 (see www.ers.usda.gov/

data-_products/rural-_urban-_continuum-_codes), distinguishing metropolitan

counties by the population size of their metro area and nonmetropolitan counties by

degree of urbanization and adjacency to a metro area. Higher RUCC indicates a

more rural county. Other county-level covariates mentioned above are available at

data.iowadatacenter.org/browse/counties.html. Since the effects of education

and poverty on the survival times are not significant based on our initial model fitting

by the proposed method, we exclude them in the analysis presented below. Thus,

we have three-dimensional w̃ij and two-dimensional xi. Table 2.1 presents several

summary statistics for the data. As shown in Figure 2.1, median household income

and RUCC are significantly, negatively correlated.

To get an initial feeling about the role that each county-level covariate is playing,
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Table 2.1 Iowa SEER data: Summary statistics for follow-up times and both
individual- and county-level covariates

Continuous variables Minimum Median Maximum
follow-up time in months 1 19 47
Age in years 26 72 103
RUCC 2 7 9
Income (×1000) 20.627 29.110 39.356
Categorical variables Level Count Proportion (%)
Status Event 488 45.5

Censored 585 54.5
Stage Local 510 47.5

Regional 355 33.1
Distant 208 19.4
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Figure 2.1 Iowa SEER data: Panel (a) shows the scatter plot and simple linear
regression line by regressing median household income on RUCC. Panel (b) shows
the baseline hazards for Model 1. The dashed line corresponds to Breslow’s
estimate of λ0(t) obtained by the GF approach, where the circles represent the
hazard values at each month; the solid line is the fitted baseline hazard by our
approach, where the solid squares correspond to the cut-point values
a = (1, 11, 16, 17, 19, 20, 25, 28, 29, 36, 40, 44, 47).

Table 2.2 provides the distribution of each county-level covariate stratified by the

individual-level stage of disease. The gamma statistic (GK), originally proposed by

Goodman and Kruskal (1954), is calculated to quantify the association between each

county-level covariate and the stage of disease. The GK values range from −1 (100%
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negative association) to 1 (100% positive association), where the value 0 indicates no

association. We see that women with a distant-stage at diagnosis are much more likely

than those with a local-stage to live in counties with a high degree of urbanization

(GK = −0.11; 95% CI: from −0.20 to −0.01), while the association between stage

and income is not significant (GK = 0.04; 95% CI: from −0.06 to 0.13). These

associations roughly imply that women living in urban counties may suffer poorer

survival, assuming that women in distant-stage are more likely to die than women in

other stages. Next, we carefully examine both these individual-level and county-level

covariates in relation to breast cancer survival, fitting the covariate-adjusted frailty

proportional hazards model.

Table 2.2 Iowa SEER data: Distribution of each county-level covariate stratified
by individual-level stage. The pattern of numbers is Number of women (%).
Goodman and Kruskal’s gamma statistics (95% confidence intervals) are −0.11
(−0.20,−0.01) and 0.04 (−0.06, 0.13) for RUCC and Income respectively.

Stage
Covariates All Women

N=1073
Local
N=510

Regional
N=355

Distant
N=208

RUCC
1-3 314 (29.3) 131 (25.7) 99 (27.9) 84 (40.4)
4-7 666 (62.1) 342 (67.1) 221 (62.3) 103 (49.5)
8-9 93 (8.6) 37 (7.2) 35 (9.8) 21 (10.1)
Income (×1000)
20-27 163 (15.2) 79 (15.5) 51 (14.4) 33 (15.9)
27-34 651 (60.7) 312 (61.2) 223 (62.8) 116 (55.8)
> 34 259 (24.1) 119 (23.3) 81 (22.8) 59 (28.3)

Models and model comparison

We fitted the proposed covariate-adjusted frailty PH model for the Iowa SEER data

with different county-level covariates, including models with RUCC only (Model

1), with median household income only (Model 2) and with both (Model 3). To

see how the piecewise assumption of baseline hazard affects the predictive ability of
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models, we considered three specifications of cut-point vector a as follows:

Case I: a = (1, 11, 16, 17, 19, 20, 25, 28, 29, 36, 40, 44, 47), which was determined

by visually examining Breslow’s estimate of λ0(t) using the GF approach, which

is given in Panel (b) of Figure 2.1.

Case II: a = (3, 7, 12, 16, 19, 24, 29, 34, 41, 47), where ak is the k
10th quantile of

the empirical distribution of observed survival times.

Case III: a = (47), which yields an exponential baseline hazard.

In all cases, we set J = 4. We fitted all the models using the corresponding

variants of the algorithm described in Appendix A.2 and similar prior specifications

suggested in the simulation study. The Markov chain mixed reasonably well despite

the high dimension of our models. For each version of our model and case, we ran a

single Markov chain of 1, 020, 000. A total number of 20, 000 were discarded as burn-

in period and 10, 000 samples were retained for posterior inference. Moreover, we also

considered another Case II with 13 cut-points and cut-point specifications based on

the event time quantiles from the Kaplan-Meier curve in Appendix A.5. The results

show that carefully choosing the cut-points is more important than simply increasing

the number of cut-points.

For the sake of comparison, we further fitted the exchangeable MPT frailty Cox

model and the Bayesian exchangeable Gaussian frailty Cox model. We compare the

models using the log pseudo marginal likelihood (LPML) developed by Geisser and

Eddy (1979) and the deviance information criterion (DIC) proposed by Spiegelhalter

et al. (2002). In the context of the frailty Cox model, the LPML for model M is

defined as LPML = ∑n
i=1

∑ni
j=1 log(CPOij), where CPOij, the ijth conditional pre-

dictive ordinate, is given by [λ (tij)δij e−Λ(tij)|D(ij)] with D(ij) denoting the remaining

data after excluding the ijth data point Dij. One can use the simple method suggest-

ed by Gelfand and Dey (1994) to estimate the CPO statistics from MCMC output.
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A larger value of LPML indicates the corresponding model has better predictive a-

bility. Furthermore, Geisser and Eddy (1979) discussed the exponentiated difference

in LPML values from two models to obtain what they termed as a pseudo Bayes

factor (PBF). The PBF is a surrogate for the more traditional Bayes factor, and

can be interpreted similarly, but is more analytically tractable, much less sensitive to

prior assumptions, and does not suffer from Lindley’s paradox. Set Ω = (e,γ,β, θ)

as the entire collection of model parameters. The DIC for model M is defined as

DIC = D̄ + pD = EΩ|D {D(Ω)}+ pD, where D(Ω) = −2 logL(γ, e) which is referred

to as the deviance function, and pD = D̄−D
(
EΩ|D{Ω}

)
which is a measure of model

complexity. Note that the DIC is also readily computed from MCMC output.

Results

Table 2.3 shows the DIC and LPML for all models under consideration. All models

under Case I provide significantly better prediction as measured by both DIC and

LPML, with differences in the range of 20–55 for DIC and 10–25 for LPML, which

indicates that the determination of the cut-point vector for the baseline hazard plays

an important role on model prediction and fit. Comparing the frailty specifications

in Model 1 across all cases, the DIC and LPML show the same trend for goodness of

fit, with the proposed model based on the LDTFP frailty model outperforming both

the MPT and Gaussian models, although the differences are only in the range of 1–4.

Comparing between Model 2 and Model 3, the proposed model is always preferred

in terms of LPML, while the MPT model is slightly better than others in term of DIC

under Model 2. Comparing all the proposed models across Model 1–Model 3, the

results indicate that Model 1 always performs best. Overall, allowing the frailty

distribution to change with county-level covariates (especially RUCC) does improve

model prediction according to LPML. In what follows, we present the results under

Case I.
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Table 2.3 Iowa SEER data: Deviance information criteria (DIC) and log of the
pseudo marginal likelihood (LPML) for models under consideration.

Case I Case II Case III
Model Frailty DIC LPML DIC LPML DIC LPML

1 LDTFP 4436 -2222 4463 -2234 4495 -2247
MPT 4441 -2225 4463 -2235 4496 -2248

Gaussian 4444 -2225 4467 -2236 4497 -2248
2 LDTFP 4441 -2224 4465 -2235 4498 -2249

MPT 4440 -2225 4462 -2236 4497 -2248
Gaussian 4443 -2225 4465 -2235 4498 -2249

3 LDTFP 4438 -2223 4464 -2235 4496 -2248
MPT 4441 -2225 4464 -2235 4498 -2249

Gaussian 4445 -2226 4467 -2236 4498 -2248

Table 2.4 presents posterior medians and equal-tailed 95% credible intervals (CI)

for main effects (components of ξ) under Model 1 – Model 3, with covariate-

adjusted frailties, and compares the individual-level covariate effects, that is, (ξ1, ξ2, ξ3),

to those obtained by Zhao et al. (2009), under the standard nonfrailty Cox model and

the Cox frailty model that has a MPT prior for the baseline survival, centered at the

log-logistic family, and with conditionally autoregressive (CAR) county-level spatial

frailties. The best fitting Cox model reported by Zhao et al. (2009) has an LPML of

−2226. Therefore, the pseudo Bayes factor for the proposed model versus the CAR

model is e2226−2222 ≈ 55, implying that the proposed model predicts about 55 times

better than the model with CAR frailties. In addition, the proposed model offers

a unique interpretation. The posterior medians and 95% CIs for all individual-level

effects change little across the different versions of the proposed model, indicating

that the Cox regression estimates are reasonably stable for these data, except for

the estimate of “Regional stage,” for which the CAR model 95% CI is much wider

than those under the considered versions of the proposed model. This may be partly

due to the benefit of including county-level covariates. The best model according to

LPML, Model 1, indicates that all the individual-level effects are significant at the

0.05 level. Higher age at diagnosis increases the hazard within each county. For in-
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stance, women are about e0.019×20 ≈ 1.46 times more likely to die from breast cancer

than those twenty years younger who have the same disease stage and live in the

same county. Compared with women having local stage of disease, women of the

same age and living in the same county are e0.27 ≈ 1.31 times more likely to die if

their cancer is detected at the regional stage, and e1.64 ≈ 5.16 times more likely to

die if detected at the distant stage. We additionally present the fixed effects under

the marginal PH model (i.e., using the R function coxph with option cluster) across

Model 1–Model 3 in Appendix A.5. Note that the coefficient estimates under the

marginal PH model have population-averaged interpretations and cannot be directly

compared with those fitted from the proposed frailty PH model due to different model

structures.

Table 2.4 Iowa SEER data: Posterior medians (95% credible intervals) of fixed
effects ξ from various models.

Predictor Model 1 Model 2 Model 3 CAR Cox
ξ1 (Age) 0.019 0.020 0.020 0.018 0.019

(0.013, 0.025) (0.014, 0.026) (0.014, 0.026) (0.012, 0.025) (0.013, 0.025)
ξ2 (Regional) 0.27 0.27 0.27 0.22 0.30

(0.03, 0.49) (0.03, 0.47) (0.05, 0.50) (0.01, 0.49) (0.08, 0.52)
ξ3 (Distant) 1.64 1.67 1.65 1.65 1.64

(1.43, 1.88) (1.43, 1.89) (1.43, 1.89) (1.40, 1.93) (1.42, 1.87)
ξx1 (RUCC) -0.105 -0.082

(-0.185, -0.041) (-0.179, 0.011)
ξx2 (Income) 0.042 0.011

( 0.003, 0.084) (-0.040, 0.066)

Regarding the effect of county-level covariates, living in a higher median household

income or urban counties is associated with poorer survival after a breast cancer

diagnosis. For example, the results under Model 1 indicate that after controlling for

individual covariates and county, the hazard rate of women living in urban counties

(with RUCC = 2) will be e0.105×7 ≈ 2 times larger than that of women in rural

counties (with RUCC = 9). The results under Model 2 imply that after controlling

for individual covariates and frailties, women have about a 1.7 times larger hazard rate

if they live in median household income counties of $35, 301 compared with median
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household income of $23, 354 (see also Figure 2.2). Under Model 3, the results

indicate that when both the county-level covariates are included simultaneously, their

independent effects are attenuated, partly due to the multicollinearity between them

(see the middle two plots in Figure 2.3).

We obtain the fitted predictive frailty densities for both ei (median-zero) and ei+

x′iξx (full distribution) and survival curves for women with mean entry age 68.8 years

and distant stage of disease who live in the counties with different levels of median

household income or RUCC, under the different versions of the proposed model. The

three levels are chosen from the 5%, 50% and 95% quantiles of each covariate value.

The results are reported in Figures 2.2 and 2.3. Under our best fitting, Model 1

(see left three plots in Figure 2.2), the results indicate that higher values of RUCC

increase the frailty variance and suggest a non-Gaussian shape (upper); we also see

overall higher frailty after mixing over the location shift x′iξx (middle) and so poorer

survival (lower) in urban counties. Increasing heterogeneity as ruralness increases

under Model 1 translates into increasing association among those living in more

rural counties versus urban. In Appendix A.5, Kendall’s tau is computed and plotted

as a function of RUCC for individuals with mean entry age 68.8 years and distant

stage. Kendall’s tau increases by a factor of three as RUCC goes from 2 to 9. Note

that under a traditional gamma frailty model the association is static.

Under Model 2, the frailty densities only slightly change compared with Model

1, but we do see poorer survival in counties with higher median household income.

Figure 2.3 demonstrates that after adjusting individual covariates and median house-

hold income (right three plots), there is little effect of RUCC on either predictive

frailty densities or survival curves; while after adjusting for RUCC (left three plots),

the effect of median household income is almost negligible. In Appendix A.5, the

survival curves are also compared with those obtained under the marginal PH model.

Overall, the marginal PH model under-predicts survival time up to about 1 month,
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for example, it gives estimates of median survival a month less, compared with our

proposed model for patients with mean entry age 68.8 years and distant stage of

disease who live in the same county. This may be partly due to the fact that the

marginal PH model averages over the changing behavior of the frailty distribution

over the ruralness measure.

It is widely known that access to quality care and screening for breast cancer

is more readily available to those with greater financial means and/or those living

in urban areas. Therefore, our findings of increased survival for poorer and more

rural counties for this cohort are initially puzzling. However, hormone replacement

therapy (HRT) increased about 150% in the 1990s (Wysowski and Governale, 2005),

after several observational studies linked HRT to prevention of osteoporosis and pro-

tection from heart disease. However, this increasing use of HRT abated suddenly in

2002, when the Women’s Health Initiative clinical trial linked HRT to aggressively

invasive breast cancer (Rossouw et al., 2002). In fact, overall breast cancer incidence

rates peaked in 1999. Between 2001 and 2004 overall invasive breast cancer inci-

dence declined, but fell much more drastically among women living in urban versus

rural counties, and among women living in low-poverty versus high-poverty counties.

Hausauer et al. (2009) attribute this discrepancy to greater use of postmenopausal

estrogen/progestin hormone replacement therapy among more affluent women and/or

women living in urban counties up until 2002, when the Women’s Health Initiative

trial was stopped prematurely on May 31, 2002, according to Rossouw et al. (2002),

“...because the test statistic for invasive breast cancer exceeded the stopping boundary

for this adverse effect and the global index statistics supported risks exceeding bene-

fits.” It is plausible that increased risk (i.e., stochastically larger frailties) in more

affluent and more urban counties has to do with a larger proportion of women being

prescribed HRT in the late 1980s and 1990s. Further exploratory analyses on other

cohorts of SEER Iowan breast cancer data (1975–’79, ’80–’84, ’85–’89, and ’90–’94)
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Figure 2.2 Iowa SEER data: Fitted predictive frailty densities [Panels (a) and (b)],
frailty densities with location shifts [Panels (c) and (d)] and survival curves [Panels
(e) and (f)] for women with mean entry age 68.8 years and distant stage of disease
from different county covariate levels under Model 1 [Panels (a), (c) and (e)] and
Model 2 [Panels (b), (d) and (f)]. In Panels (a), (c) and (e), the results for
RUCC=2, 5 and 9 are displayed as dashed, continuous and dotted lines,
respectively. In Panels (b), (d) and (f), the results for Income=23.354, 29.176 and
35.301 are displayed as dashed, continuous and dotted lines, respectively.
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Figure 2.3 Iowa SEER data: Fitted predictive frailty densities [Panels (a) and (b)],
frailty densities with location shifts [Panels (c) and (d)] and survival curves [Panels
(e) and (f)] for women with mean entry age 68.8 years and distant stage of disease
from different county covariate levels under Model 3. In Panels (a), (c) and (e), the
results for RUCC=2, 5 and 9 are displayed as dashed, continuous and dotted lines,
respectively. In Panels (b), (d) and (f), the results for Income=23.354, 29.176 and
35.301 are displayed as dashed, continuous and dotted lines, respectively.
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show a reversal of the effects of income and ruralness, agreeing with intuition. Par-

alleling our study, Krieger et al. (2010) used county-level census data on income and

found rising and falling breast cancer incidence rates for the SEER data over the range

1992–2005 for caucasian women living in high-income counties, which “mirrored the

social patterning of hormone therapy use.”

In a longer follow-up study of the Women’s Health Initiative trial, Chlebowski

et al. (2010) found that those on estrogen plus progestin compared to placebo had

about 25% higher incidence of invasive breast cancer. Among those diagnosed with

breast cancer, the two treatment arms had similar histology, but the estrogen plus

progestin group were 78% more likely to have cancers that had spread to lymph nodes

than placebo, and the estrogen plus progestin group were about twice as likely to die

from breast cancer versus placebo. It would appear that hormone replacement thera-

py fortified the the virulence of breast cancer, significantly increasing both incidence

and mortality. This same study showed an impressive 7% one-year drop in incidence

right after the Women’s Health Initiative study was prematurely stopped and the

medical community warned of a possible link between hormone replacement therapy

and breast cancer.

2.4 Simulation studies

We performed a simulation study to assess the performance of the proposed model.

The simulated data are also used to compare the proposed approach with existing

models. Specifically, we consider the GF approach described in Section 2.1 and the

positive stable frailty Cox model proposed by Liu et al. (2011). Under this latter

model, the shape parameter is allowed to depend on cluster-level covariates. In terms

of our notation, they assumed that the conditional hazard function of Tij is

λ(t|w̃ij,xi, ei) = λ0i(t) exp(w̃′ij ξ̃i + ei), (2.2)
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where the baseline hazard functions λ0i(t) and regression parameters ξ̃i are cluster-

specific, and exp(ei) follows a positive stable distribution with shape parameter αi ∈

(0, 1), relying on the cluster-level covariates vector xi through a logit link function,

denoted by PS(αi). They did not deal with this model directly, but rather derived

the marginal model

λ(t|w̃ij,xi) = h0(t) exp(w̃′ijη) (2.3)

by imposing the restrictions η = αiξ̃i, H0(t) = {Λ0i(t)}αi , where H0(t) =
∫ t
0 h0(s)ds

and Λ0i =
∫ t

0 λ0i(s)ds. In other words, they essentially fitted the above marginal Cox

model by maximizing the pseudo partial likelihood under the working independence

assumption (Wei et al., 1989), and then utilized the imposed constraints to estimate

the parameters in the frailty model. Although they considered a more flexible con-

ditional Cox model, they made many assumptions to get the marginal model, some

of which are difficult to check in practice. Moreover, they faced a nonidentifiability

problem when a cluster-level covariate was included in the conditional Cox model,

so cluster-level covariates had to be excluded from the marginal model as well, lead-

ing to potentially poorer prediction of the marginal survival function. Their method,

referred to below as PSF, will be compared with our approach focusing on the predic-

tion of survival functions in the simulation studies. A comparison of the two methods

for the fixed effect estimates cannot be conducted, since they have different model

structures. We conducted the simulation study in R. The GF and PSF approaches

were implemented by using the function coxme and coxph (with the option cluster),

respectively, included in the R packages coxme and survival.

Simulation Settings

Two scenarios for the frailty distributions were considered. In the first case, referred

to as Scenario I, a covariate-dependent family of distributions is considered, where

the density shape evolves from one mode to two as the cluster-specific covariate x
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increases its value; this mirrors the effect of RUCC in panel (a) of Figure 2.3 for

Model 1. In the second case, referred to as Scenario II, a covariate-dependent

positive stable distribution is considered. The specific distributional forms for each

setting were the following:

Scenario I: ei|xi ind.∼ 0.5N(−e0.4xi , 1) + 0.5N(e0.4xi , 1), xi iid∼ U(−3, 3).

Scenario II: exp(ei)|xi ind.∼ PS(αi), αi = 1/(1 + e−0.5−0.5xi), xi iid∼ U(0, 2).

Note that the first setting is not a particular case of the proposed model; the second

setting, chosen from the simulation study of Liu et al. (2011), is included to evaluate

the behavior of the proposed approach when the PSF model is correct.

Given the frailties, the data under Scenario I were simulated from the condi-

tional PH model (2.1) with λ0(t) = 1, wij = (w1ij, w2ij, xi)′ and ξ = (ξ1, ξ2, ξx)′ =

(1.0, 0.5, 1.0)′; the data under Scenario II were simulated from the PSF model (2.2)

with w̃ij = (w1ij, w2ij)′, η = (1, 0.5)′ and H0(t) = t. For each simulation scenario, 200

replicates of the data set were generated by assuming the following: w1ij
i.i.d.∼ N(0, 1)

and w2ij
i.i.d.∼ Bernoulli(0.5), i = 1, . . . , 100, j = 1, . . . , 10. In each case, a noninforma-

tive censoring scheme was considered, where the censoring times were simulated from

an U(0.25, 4) distribution, so that the censoring rate is approximately 35% under

Scenario I and 25% under Scenario II .

For each data set, the GF approach was employed, yielding point estimates of ξ,

var(ei) and ei, which we denote by ξ̂(0), θ̂2(0) and ê
(0)
i respectively. Based on these

point estimates, the predictive survival function was calculated as follows:

ŜGF (t|w) = n−1
n∑
i=1

exp
{
−Λ̂(0)

0 (t) exp
{
w′ξ̂

(0) + ê
(0)
i

}}
, (2.4)

where Λ̂(0)
0 (t), depending on ê

(0)
i s, denotes Breslow’s estimator of Λ0(t) (see, e.g.,

Therneau et al., 2003, Section 2). We then fitted the proposed model, by considering

J = 4, K = 10, τ1 = 1.001, τ2 = 1.001θ̂2(0), ac = 1, bc = 1, γ0 = 013 and S0 =
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103 × I13. For each data set a single Markov chain of length 55, 000 was obtained by

using the algorithm described in Appendix A.2. A burn-in period of 5, 000 scans was

considered, and 5, 000 samples were retained for posterior inferences. The posterior

mean of the corresponding parameters are denoted by ξ̂, θ̂2, ĝ(e|x) and Ŝ(t|w).

Finally, the PSF approach was considered but including the cluster-level covariates

in the linear predictor, and the associated predictive survival function, based on

Breslow’s estimator of the underlying baseline hazard function, was obtained and is

denoted by ŜPSF (t|w).

The competing approaches were compared regarding the estimation of the regres-

sion coefficients and also compared by computing the weighted integrated squared

error (ISE) for the estimated survival distributions, given by

∫ ∞
0

{
Ŝm(t|w)− S(t|w)

}2
fT (t|w)dt,

where Ŝm(t|w), S(t|w) and fT (t|w) are the estimated survival function, the true

survival function and density function, respectively, for a subject with covariate vector

w.

Simulation results

The results for the regression coefficients using the proposed model and the GF ap-

proach under Scenario I are given in Table 2.5, where the bias of the corresponding

point estimators, the Monte Carlo mean of the posterior standard deviation/standard

error (MEAN-SD), the Monte Carlo standard deviation of the point estimates (SD-

MEAN) and the Monte Carlo coverage probability (CP) of the 95% credible inter-

val/confidence intervals are presented. The results suggest that the posterior means

of ξ are almost unbiased estimators and that the observed bias for ξx under the pro-

posed approach is much smaller than the corresponding value obtained under the GF

approach. Moreover, under the proposed model, the MEAN-SD and the SD-MEAN
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values are in fairly close agreement, indicating that the posterior standard devia-

tion is an unbiased estimator of the frequentist standard error. Finally, the CPs are

all around the nominal 95%. The same does not hold for GF, which substantially

underestimates the standard error for ξx, leading to low coverage probabilities.

Table 2.5 Simulation data – Scenario I: True value, bias of the point estimator,
mean (across Monte Carlo simulations) of the posterior standard
deviations/standard errors (MEAN-SD), standard deviation (across Monte Carlo
simulations) of the point estimator (SD-MEAN) and Monte Carlo coverage
probability for the 95% credible interval/confidence interval (CP) for the regression
parameters. The results are presented under the proposed model and under the GF
approach.

Proposed Model GF Model
Parameters True BIAS MEAN-SD SD-MEAN CP BIAS MEAN-SD SD-MEAN CP

ξ1 1.0 0.011 0.052 0.054 0.930 -0.011 0.051 0.059 0.910
ξ2 0.5 0.008 0.088 0.090 0.945 -0.003 0.088 0.091 0.950
ξx 1.0 -0.009 0.141 0.126 0.965 -0.052 0.083 0.142 0.775

The average of the estimated frailty distributions and survival functions across

simulated data sets for some specific covariate values are presented in Figure 2.4 for

Scenario I and in Figure 2.5 for Scenario II. The results in Scenario I reveal that

the proposed model roughly captures the modal behavior of the covariate-dependent

frailty distributions. Although not perfect, the proposed model performs remarkably

well given that only n = 100 imperfectly-observed observations were generated for

each data set. The situation is much less favorable for the GF approach, which fails

to correctly capture the shape of the frailty distributions, leading to poor estimated

survival functions. This behavior is likely driving the underestimation of survival

noted in the SEER analysis. As expected, the PSF approach also suffers from bad

prediction since the underlying assumption for frailty distribution is violated. The

results in Scenario II show that the proposed model is still able to capture the

frailty distributional shape even when the data were truly generated from the PSF

model. Regarding the estimated survival curves, the results suggest that essentially

no differences among the three methods are observed; all estimated functions are close
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Figure 2.4 Simulated data – Scenario I: Mean, across simulations, of the posterior
mean of the survival and frailty density functions under the proposed model. Panels
(a) and (b) show the results for the survival functions. Panels (c) and (d) show the
results for the frailty densities. Panels (a) and (c) show the results for covariate
values (2, 1,−2). Panels (b) and (d) show the results for covariate values (0, 1, 2).
The true curves are represented by continuous lines. The results under the proposed
model are represented by dashed lines. The results under the exchangeable
Gaussian frailty model are represented by dotted lines. In Panels (a) and (b) the
results obtained under the PSF approach are represented by dot-dashed lines.

to the truth, indicating that there is little price to be paid when using the proposed

model for the clustered survival data that were truly generated from the PSF model.

The results of the comparison of the estimated survival curves in terms of ISE

are presented in Table 2.6, where the Monte Carlo mean and standard deviations for
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Figure 2.5 Simulated data – Scenario II: Mean, across simulations, of the posterior
mean of the survival and frailty density functions under the proposed model. Panels
(a) and (b) show the results for the survival functions. Panels (c) and (d) show the
results for the frailty densities. Panels (a) and (c) show the results for covariate
values (2, 1, 0.5). Panels (b) and (d) show the results for covariate values (0, 1, 1.5).
The true curves are represented by continuous lines. The results under the proposed
model are represented by dashed lines. The results under the exchangeable
Gaussian frailty model are represented by dotted lines. In Panels (a) and (b) the
results obtained under the PSF approach are represented by dot-dashed lines.
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the ISE for two different predictor values are given. The results under Scenario I

show a close agreement with the observed for the regression coefficients; the proposed

model substantially outperforms the other two methods in terms of smaller means

and standard deviations of the ISE. Even under Scenario II, the proposed model

still provides almost the same results as the PSF model in terms of ISE.

Table 2.6 Simulated data – Scenario II: Monte Carlo mean (Monte Carlo standard
deviation) for the ISE of the survival function for two different predictor values.
The results for the different approaches under both simulation scenarios are
presented. The numbers correspond to 103 times the original values.

Scenario (w1, w2, x) Proposed Model GF Model PSF Model
I (2, 1,−2) 2.02 (2.48) 4.37 (3.46) 6.28 (3.49)

(0, 1, 2) 1.94 (2.53) 10.5 (6.86) 14.3 (10.9)
II (2, 1, 0.5) 3.17 (4.66) 3.13 (3.33) 2.19 (2.26)

(0, 1, 1.5) 0.96 (1.18) 0.89 (1.22) 0.83 (1.10)

In Appendix A.4, additional simulation results are presented which show that, un-

der Scenario I, for larger sample sizes better estimates of the frailty distributions are

obtained and that the approach is not affected by the choice of J in the specification of

the LDTFP model. For further comparison, we also fitted the exchangeable mixture

of Polya trees (MPT) (Hanson, 2006b) frailty Cox’s model using the function PTglmm

available in DPpackage (Jara et al., 2011) under Scenario I, in which the results

show that our approach outperforms the MPT, and considered a third scenario favor-

able to the GP approach, where the results show that our method pays little price for

the extra generality when using the proposed model when normality and exchange-

ability are valid assumptions. Overall, the proposed approach provides a flexible way

to capture the heterogeneity in the frailty distribution, provides superior prediction,

and yields an essential improvement for the estimation of population effects, espe-

cially when the intra-cluster correlation (or variability in frailties) is relatively large.

When the frailty variances are small across clusters, the proposed approach is still

recommended due to its flexibility.
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2.5 Concluding remarks

Very limited work has been done on covariate-adjusted frailty survival models for

clustered time-to-event data. Liu et al. (2011) proposed a stratified Cox model

with positive stable frailties, where the shape parameter of the frailty distribution

is allowed to depend on cluster-level covariates. However, they essentially fitted a

marginal Cox model, and then utilized the positive stable assumption and some im-

posed constraints to estimate the parameters in their proposed model. The model

proposed in this paper cleanly separates population-level effects from the cluster-level

effects, which determine the shape of the frailty distribution. Frailty density shape is

modeled using a tractable median-zero LDTFP prior. Other nonparametric density

regression approaches could also be considered; however, model identifiability requires

a location constraint such as mean-zero or median-zero. The proposed model provides

a natural generalization of the conventional PH model with parametric or nonpara-

metric exchangeable frailties, and accommodates frailty distribution “evolution” over

cluster-level covariates providing superior prediction, as shown in our simulation s-

tudies. When data are truly generated according to an exchangeable Gaussian frailty

PH model or the model of Liu et al. (2011), our model does about the same as the

underlying true model in terms of fixed effects and/or marginal survival estimations.

We illustrate the usefulness of the proposed model with an analysis of a subset of

the Iowa SEER breast cancer data, and demonstrate that higher degree of ruralness

corresponds to a more bimodal frailty distributional shape with larger variance. In

general, the proposed model is more flexible than currently existing frailty PH mod-

els, leading to more robust inferences, and thus is recommended. One drawback of

the proposed model is that, as currently fit in R, obtaining inference takes longer.

For ease of computation, we have assumed a piecewise constant structure for the

baseline hazard function λ0(t) and taken the independent normal prior distributions

for log(λk)’s, so that the baseline hazard heights λk and covariate effects ξ can be
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updated simultaneously. The use of empirically-derived cut-points has permeated

much of the Bayesian survival literature for over a decade. Use of Breslow’s base-

line estimate coupled with the GF approach led to a greatly increased LPML over

the empirical approach. An obvious extension of our current work is to employ a

smoothed baseline, for example, using penalized B-splines (Hennerfeind et al., 2006),

the piecewise exponential with random cut-points (Sahu and Dey, 2004), MPT (Han-

son, 2006b), etc. Any of these approaches could improve model fit and prediction, but

cannot currently be fitted in the R software. We are currently working on extending

the methodology in this paper to other survival models and smoothed baselines.
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Chapter 3

Marginal Bayesian Nonparametric Spatial

Survival Model1

The global emergence of Batrachochytrium dendrobatidis (Bd) has caused

the extinction of hundreds of amphibian species worldwide. It has become

increasingly important to be able to precisely predict time to Bd arrival

in a population. The data analyzed herein present a unique challenge in

terms of modeling because there is a strong spatial component to Bd ar-

rival time and the traditional proportional hazards assumption is grossly

violated. To address these concerns, we develop a novel marginal Bayesian

nonparametric survival model for spatially correlated right-censored da-

ta. This class of models assumes that the logarithm of survival times

marginally follow a mixture of normal densities with a linear dependen-

t Dirichlet process prior as the random mixing measure, and their joint

distribution is induced by a Gaussian copula model with a spatial corre-

lation structure. To invert high-dimensional spatial correlation matrices,

we adopt a full-scale approximation that can capture both large- and

small-scale spatial dependence. An efficient Markov chain Monte Carlo

algorithm with delayed rejection is proposed for posterior computation,

and an R package spBayesSurv is provided to fit the model. This ap-

1Zhou, H., Hanson, T., and Knapp, R. (2015). Marginal Bayesian nonparametric model for time
to disease arrival of threatened amphibian populations. Biometrics, accepted. Reprinted here with
permission of Wiley.
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proach is first evaluated through simulations, then applied to threatened

frog populations in Sequoia-Kings Canyon National Park.

Keywords: Spatial survival data; Point-referenced; Bayesian nonpara-

metric; Dependent Dirichlet process; Delayed rejection; Full-scale approx-

imation; Copula; Proportional hazards.

3.1 Introduction

The Earth is currently experiencing the most severe mass extinction of species since

the dinosaurs died off 65 million years ago. Scientists estimate that we are currently

losing on the order of up to 50,000 species per year, 1,000 to 10,000 times greater

than the fossil record (Chivian and Bernstein, 2008). The current mass extinction is

almost entirely due to humankind in the form of destruction of natural habitats, but

with disease being increasingly recognized as another important driver. The global

emergence of Batrachochytrium dendrobatidis (Bd), a fungus that can kill frogs within

a few weeks, has caused the extinction of hundreds of amphibian species worldwide

(Wake and Vredenburg, 2008), including the recent rapid local extinction of many

mountain yellow-legged frog populations in the Sierra Nevada mountains of California

(Rachowicz et al., 2006; Vredenburg et al., 2010). These impacts of Bd have been

described as “...the most spectacular loss of vertebrate biodiversity due to disease in

recorded history...” (Skerratt et al., 2007). Once the most common amphibian in the

region, mountain yellow-legged frogs now inhabit less than one-tenth of their range

of one hundred years ago and continue to disappear at an alarming rate.

The mountain yellow-legged frog is a species complex of the southern mountain

yellow-legged frog Rana muscosa and the Sierra Nevada yellow-legged frog Rana sier-

rae (Vredenburg et al., 2007). In part due to Bd-caused declines, these species were

recently listed as “endangered” under the U.S. Endangered Species Act (Federal Reg-

ister 2014). Bd often spreads in wavelike patterns (Cheng et al., 2011; Lips et al.,
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2008). One of the authors (Knapp) collected data over a 12-year period by hiking

large areas of Sequoia and Kings Canyon National Parks, one of the few areas in the

Sierra Nevada that still contained some Bd-negative frog populations at the beginning

of this study (Vredenburg et al., 2010). Bd-negative frog populations were discovered

during the first park-wide survey of all suitable habitats (Knapp et al., 2003), and

were revisited, typically every 1-2 years, over the study period to determine their Bd

status over time.

It has become increasingly important to be able to predict when Bd is likely to

arrive in a frog population, considering that interventions may be useful to prevent

the extinction of frog populations following the Bd arrival (Vredenburg et al., 2010).

We model the Bd arrival time of frog populations from discovery given two baseline

measures of Bd proximity: (i) “bdwater,” indicating whether Bd was present during

the previous year (= 1) or not (= 0) in the watershed containing the frog population

of interest, and (ii) “bddist,” indicating the linear distance to the nearest Bd-positive

location during the previous year. Once Bd arrived at a site, this site was assumed to

always be Bd-positive in subsequent years (Vredenburg et al., 2010). The location was

recorded as Universal Transverse Mercator (x, y)–coordinates in meters for each frog

population. These data provide a unique challenge in terms of modeling: there is a

strong spatial component to Bd arrival times across populations, and the proportional

hazards assumption is rather severely violated.

Traditionally, most survival models incorporating spatial information have been

semiparametric, conditional (so-called frailty) models; these include conditionally pro-

portional hazards models (Banerjee et al., 2003; Hennerfeind et al., 2006), propor-

tional odds models (Banerjee and Dey, 2005; Zhao et al., 2009), and accelerated

failure time models (Zhao et al., 2009; Wang et al., 2012). Any of these models is

preferable if they actually fit the data, as such semiparametric structure allows for

easy conditional interpretation in terms of hazard ratios, odds ratios, or acceleration
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factors, respectively. However, these models impose constraints on survival densities.

For example, both proportional hazards and accelerated failure time models induce

stochastically ordered survival times for populations with different covariates or frail-

ties. For this reason, if the semiparametric structure is not appropriate, the addition

of frailties may not improve model fit, or can even make it worse by adding noise.

Instead of incorporating a spatial frailty term, Li and Lin (2006) proposed a marginal

survival model, which they termed a semiparametric normal transformation model,

where survival times are assumed to marginally follow the proportional hazards (PH)

model and their joint distribution is specified by a Gaussian copula model with a

spatial correlation structure. One advantage of their model over frailty models is

that the regression coefficients have population-level interpretations. However, their

model imposes constraints so that survival curves from different covariate levels are

not allowed to cross, which is unrealistic in many practical applications (see De Io-

rio et al., 2009), including the mountain yellow-legged frog illustration used in the

current study (e.g. see Kaplan-Meier estimates in Appendix B.6). For these data, a

more flexible survival model is needed to quantify the risk factors associated with the

Bd arrival time of frog populations while taking spatial correlation into account.

Flexible Bayesian nonparametric modeling techniques have been successfully de-

veloped for handling complex survival data that traditional semiparametric survival

models fail to fit. One appealing feature about nonparametric approaches for esti-

mating survival densities is their ability to avoid unrealistic constraints on how the

variance, skewness, shape and even modality change with covariates. The linear de-

pendent Dirichlet process mixture model (De Iorio et al., 2009; Jara et al., 2010,

2011), essentially a countable mixture of accelerated failure time models, provides a

flexible way to capture crossing hazard and survival curves. However, it is unclear

how to extend these Bayesian nonparametric models to a geostatistical setting for the

analysis of spatially correlated survival data, and there has been virtually no related
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literature so far.

In this article, we develop a marginal Bayesian nonparametric spatial survival

model for the analysis of the Bd arrival time of yellow-legged frog populations given

the baseline covariates bdwater and bddist. This model assumes that the logarithm

of survival times marginally follow a linear dependent Dirichlet process mixture (LD-

DPM) model, and specifies their joint distribution via a Gaussian copula model. Two

major features of the proposal are that the resulting survival curves are allowed to

cross, or not, as dictated by the data, and that the inclusion of spatial information im-

proves the prediction of Bd arrival time dramatically. To invert the high-dimensional

spatial correlation matrices, we adopt a full scale approximation that can capture

both large- and small-scale spatial dependence (Sang and Huang, 2012). To com-

pare our proposal with the semiparametric normal transformation model proposed

by Li and Lin (2006), we also present a Bayesian version of their model, denoted as a

marginal PH spatial model. We develop efficient Markov chain Monte Carlo (MCM-

C) algorithms for both our model and the marginal PH spatial model. The analysis

of the mountain yellow-legged frog data shows that our proposed spatial LDDPM

model provides improvement over most traditional models, including the non-spatial

LDDPM, PH, PH augmented with spatial frailties, and marginal PH spatial. For

ease of implementation, we also developed an R package spBayesSurv, which is avail-

able for downloading at http://cran.r-project.org/web/packages/spBayesSurv,

that can fit our proposed spatial LDDPM, the non-spatial LDDPM, PH, and the

marginal PH spatial models.

The rest of this article is organized as follows. Section 2 describes the marginal

LDDPM spatial survival model. Section 3 provides a recipe for efficient MCMC

inference, discusses prediction, and proposes a cross-validated predictive model com-

parison criterion. Section 4 discusses simulation results, shows how ignoring spatial

correlation grossly can bias inferences, and validates that our model selection crite-
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rion works well. Section 5 presents the analysis of the time to Bd arrival data, and

shows how posterior inference can be interpreted and put to practical use. The paper

concludes with concluding remarks in Section 6.

3.2 Marginal LDDPM spatial survival model

Model specification

Suppose right-censored spatial survival data {(toi , δi,xi, si) : i = 1, . . . , n} are collected

in a spatial region of interest D, where toi is a recorded event time, δi is a censoring

indicator equaling 1 if toi is the observed event time and equaling 0 if the event time is

right-censored at toi , xi is a p-dimensional vector of covariates including the intercept,

and si records the spatial location. We denote by ti the latent true (unobserved if

δi = 0) event time corresponding to toi , and then the relationship between δi and ti

can be described by δi = I(ti = toi ), where δi = 0 implies ti > toi . Since event times

are all positive, it remains appealing to work on the logarithms of event times, i.e.

yi = log(ti), yoi = log(toi ). In addition, we assume an independent censoring scheme;

that is, the event and censoring times are independent given the observed covariates.

We assume that yi|xi marginally follows a linear dependent Dirichlet process mix-

ture model of De Iorio et al. (2009),

Fxi(y|G) =
∫

Φ
(
y − x′iβ

σ

)
dG{β, σ2}, (3.1)

where Φ(·) is the cumulative distribution function (cdf) of the standard normal, and

G follows the Dirichlet Process (DP) prior (Ferguson, 1973) with concentration pa-

rameter α > 0 and base measure G0 on Rp × R+, denoted by G ∼ DP (α,G0). This

Bayesian nonparametric model treats the conditional distribution Fx as a function-

valued parameter and allows its variance, skewness, modality and other features to

flexibly vary with the x covariates. See Pati et al. (2013) for the sufficient conditions
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for posterior consistency. Note that there is no clear approach to incorporate simple

spatial frailties into this model, as there is a countable number of linear predictors.

To incorporate the spatial correlation among the event times, we first define a

residual process z(si), after adjusting for covariate effects, as

z(si) = Φ−1 {Fxi(yi|G)} , i = 1, . . . , n. (3.2)

Note that z(si) follows the standard normal distribution, providing a natural way

of modeling spatial dependence. Specifically, we assume that z = (z(s1), . . . , z(sn))′

arises from a zero-mean Gaussian process (GP) {z(s) : s ∈ D} with a valid cor-

relation function Cθ(s, s′); that is, z follows a multivariate Gaussian distribution

as z ∼ Nn(0,Cθ), where Cθ = [Cθ(si, sj)]ni,j=1 is the n × n correlation matrix

depending on a parameter vector θ. To allow for a nugget effect, we consider

Cθ(si, sj) = θ1ρ(si, sj) + (1 − θ1)I(si = sj), where ρ(·, ·) is a valid correlation func-

tion, and θ1 ∈ [0, 1], also known as a “partial sill” in Waller and Gotway (2004),

is a scale parameter measuring a local maximum correlation. The simplest param-

eterization for the correlation function ρ(·, ·) is an isotropic one, where the spatial

correlation is assumed to be a function solely of the Euclidean distance dij between

locations si and sj. In this paper, we consider the exponential correlation function

ρ(s, s′) = exp {−θ2||s− s′||}, where θ2 controls the spatial decay over distance. Oth-

er choices such as the spherical, Gaussian and Matérn correlation functions are also

possible.

The above model specification is completely equivalent to Gaussian copula mod-

eling (Song, 2000). In fact we have modeled the joint distribution of y = (y1, . . . , yn)

as a function of its marginal cdf, that is,

y ∼ Φn

(
Φ−1{Fx1(y1|G)}, . . . ,Φ−1{Fxn(yn|G)}; Cθ

)
,

where Φn(·; Σ) is the cdf of an n-dimensional normal with mean zero and covariance

matrix Σ. Following Song (2000), the likelihood function based upon the complete
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data {(yi,xi, si), i = 1, . . . , n} is

L = |Cθ|−1/2exp
{
−1

2z′(C−1
θ − In)z

} n∏
i=1

fxi(yi|G), (3.3)

where In is the n × n identity matrix, and fxi(yi|G) is the density function corre-

sponding to Fxi(yi|G).

Prior specification and hierarchical modeling

For the DP prior G ∼ DP (α,G0), we define the base measure G0 through indepen-

dent priors Np(β|µ,Σ) and Ga(σ−2|νa, νb). Here, Np(·|µ,Σ) and Ga(·|a, b) denote

a p-dimensional normal distribution with mean µ and covariance matrix Σ, and a

gamma distribution with shape a and rate b, respectively. Note that it is critical to

select an appropriate prior for the concentration parameter α, since its value controls

the number of distinct components to which the data points are allocated. We assume

a Ga(α|a0, b0) prior for α, which has been widely used by many researchers because

of its tractability. As for the correlation parameters θ = (θ1, θ2), they are typically

not consistently estimable for a wide range of correlation functions, as demonstrat-

ed by Zhang (2004). This implies that increasing sample size does not necessarily

obliterate the priors’ impact, and thus weakly informative priors may be desirable

to help identify the parameters θ, say, a Beta(θ1|θ1a, θ1b) for θ1 and a Ga(θ2|θ2a, θ2b)

for θ2 with hyperparameters θ0 = (θ1a, θ1b, θ2a, θ2b) being carefully choosen. Finally,

we specify conjugate hyperpriors on µ and Σ−1 using a normal Np(µ|m0,S0) and

a Wishart Wp ((κ0Σ0)−1, κ0), respectively, where the Wishart has mean Σ−1
0 and

degrees of freedom κ0.

Following de Carvalho et al. (2013), we suggest reasonable default hyperpriors as

follows: a0 = b0 = 2, νa = 3, νb = σ̂2, θ0 = 1, m0 = β̂, S0 = Σ̂, Σ0 = 30Σ̂, and

κ0 = 7, where β̂ and σ̂2 are the maximum likelihood estimates of β and σ2 from

fitting the log-normal accelerated failure time model log(ti) = x′iβ+σεi, εi ∼ N(0, 1),
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and Σ̂ is the asymptotic covariance estimate for β̂.

For ease of hierarchical modeling, we express the DP prior G in the stick-breaking

form (Sethuraman, 1994) as

G =
∞∑
k=1

wkδ(βk,σ2
k
), wk = Vk

∏
j<k

(1− Vj), (3.4)

where δa is a Dirac probability measure concentrated at a, Vk iid∼ Beta(1, α) and

(βk, σ2
k)

iid∼ G0 are mutually independent for k = 1, . . . ,∞. In practical implementa-

tions, either fixed (Ishwaran and James, 2001) or random stopping (Papaspiliopou-

los and Roberts, 2008) approximation procedures of the infinite sum representation

(3.4) can be considered. In this paper, we use the truncation approximation, re-

placing G with GN = ∑N
k=1wkδ(βk,σ2

k
), with N being pre-specified, where wks re-

sult from a truncated version of the stick-breaking construction: w1 = V1, wk =

Vk
∏k−1
j=1(1 − Vj), k = 2, . . . , N, VN = 1. The truncation level N can be determined

by considering the properties of the higher-order wk values in the infinite sum repre-

sentation (3.4), i.e. UN = ∑∞
k=N+1wk. Ishwaran and Zarepour (2000) demonstrated

that E(UN |α) = αN/(1 +α)N and Var(UN |α) = αN/(2 +α)N −α2N/(1 +α)2N . Then

for any given truncation level N , we can approximate these expressions by averaging

over the gamma prior for α. For example, setting N = 10 and placing Ga(2, 2) on α

in our simulation study will result in E(UN) ≈ 0.0055 and Var(UN) ≈ 0.0002, which

is more than adequate for data analyses.

In order to determine which component the ith data point is allocated, we intro-

duce configuration variables Ki. Then the hierarchical model for the data, together
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with the augmented latent true event-times, can be written as follows:

yi|B,σ2,K ∼ N(x′iβKi , σ
2
Ki

)

z(si) = Φ−1
{

N∑
k=1

wkΦ
(
yi − x′iβk

σk

)}

(z(s1), . . . , z(sn))′|θ ∼ Nn(0,Cθ)

P (Ki = k|V) = wk, k = 1, . . . , N

(Vk|α) iid∼ Beta(1, α), k = 1, . . . , N − 1

(βk, σ−2
k )|µ,Σ iid∼ Np(µ,Σ)×Ga(νa, νb)

α ∼ Γ(a0, b0)

(θ1, θ2) ∼ Beta(θ1a, θ1b)×Ga(θ2a, θ2b)

(µ,Σ−1) ∼ Np(m0,S0)×Wp

(
(κ0Σ0)−1, κ0

)

(3.5)

where B = (β′1, . . . ,β′N), σ2 = (σ2
1, . . . , σ

2
N), K = (K1, . . . , Kn), and V = (V1, . . . , VN).

3.3 Posterior inference

MCMC sampling

We develop an efficient MCMC algorithm for posterior sampling from the hierarchical

model representation (3.5). The full conditionals are straightforward to derive, but

most of them are not recognizable due to the incorporation of spatial dependence. A

complete description and derivation of the updating steps are available in Appendix

B.1 . The posterior samples for the model parameters are used for all inferences of

interest.

Let Ω = (K,y,B,σ2,V, α,θ) denote collectively the model parameters to be

updated. Note that the likelihood function involves the inversion and determinant

calculation of a very large global correlation matrix Cθ and these matrix operations

have to be repeated for every MCMC iteration. For large values of the sample size n,

e.g., n ≥ 500, we suggest replacing Cθ with C†θ based on the full scale approximation
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(FSA) approach as described in Appendix B.2. Conditional on all other parameters,

Ki is sampled from a multinomial distribution. For updating yi, βk, σ2
k and Vk, we

notice that the full conditional for each is proportional to a recognizable density mul-

tiplied by a common part exp
{
−1

2z′(C−1
θ − In)z

}
. Thus we use Metropolis-Hastings

(M-H) with independent proposals, where each proposal is based on the recogniz-

able density. However, we observed for this inititial MCMC scheme that often some

βk got “stuck” for a long period, leading to poor MCMC mixing. As a remedy, we

found that delayed rejection (Tierney and Mira, 1999) works very well. Upon a re-

jection in the M-H, instead of retaining the same position, a second-stage proposal

corresponding to a random walk is proposed. The precision parameter α, and hyper-

parameters (µ,Σ−1) are updated from their conjugate full conditionals. Finally, to

update the correlation parameters θ, we first take transformations ϑ = (ϑ1, ϑ2)′ with

ϑ1 = log
(

θ1
1−θ1

)
and ϑ2 = log(θ2), and then update ϑ using adaptive Metropolis-

Hastings algorithms (Haario et al., 2001).

Given a set of posterior samples {Ω(l), l = 1, . . . , L}, the marginal conditional

density of log event time y given the covariates x is estimated by

f̂x(y) = 1
L

L∑
l=1

N∑
k=1

w
(l)
k

1
σ

(l)
k

φ

y − x′β(l)
k

σ
(l)
k

 , (3.6)

where φ(·) is the density of the standard normal. The marginal conditional survival

and hazard functions can be estimated similarly. Then all the marginal density, sur-

vival and hazard functions of an event time t = exp{y} given x can be easily obtained.

An R package spBayesSurv accompanying this paper is provided to implement the

MCMC algorithm and plot the estimated curves; see Appendix B.7 for sample R

code.
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Spatial prediction

In geostatistics, one major interest is predicting the survival t0 at a new location

s0 with associated covariate values x0. Given the parameters Ω, by noting that

z ∼ Nn(0,Cθ), we can easily obtain that z(s0) ∼ N(µ(s0), τ 2(s0)) with µ(s0) =

h(s0)′C−1
θ z and τ 2(s0) = 1−h(s0)′C−1

θ h(s0), where h(s0) = [θ1ρ(s0, si)]ni=1 is an n×1

vector. Note that both Cθ and ρ would be replaced by C†θ and ρ† respectively if

the FSA is used. Based on the definition of z(·) in equation (3.2) and the N -level

truncation of G, we have

z(s0) = Φ−1
{

N∑
k=1

wkΦ
(

log t0 − x′0βk
σk

)}
. (3.7)

It follows that the predictive density of t0 is given by

f(t|Ω,x0, s0) = 1
t · τ(s0)φ

(
z(s0)− µ(s0)

τ(s0)

)

×
∑N
k=1wk

1
σk
φ
( log t−x′0βk

σk

)
φ(z(s0)) .

(3.8)

Given a set of posterior samples {Ω(l), l = 1, . . . , L} obtained from Section 3.3, we first

draw z(l)(s0) from N(µ(s0), τ 2(s0)) for l = 1, . . . , L, and then make the transformation

according to (3.7) to obtain a sample of predictive event-times {t(l)(s0), l = 1, . . . , L}

at the new location s0. The final predicted value of t0 can be either the mean or

median of t(l)(s0)s. In practice, it is difficult to observe all the covariates at the

whole study region D, so it is not practically feasible to create a map for predictive

event times. Alternatively, we may show a spatial map for the residual process,

which can be interpreted in a manner similar to the spatial frailties in conditional

survival models; that is, the higher the z(s) is, the larger the event time y(s) would

be on average. Note that the predictive density of t(s0) is simply (3.8) averaged

over the MCMC iterates. It is worth highlighting here that (3.8) is different from

the truncated version of the marginal density in (3.1). This is due to the fact that

the event-times are spatially correlated so that the prediction at a new location will
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borrow information from locations where the data have been collected. On the other

hand, if we assume there is no spatial correlation, i.e. θ1 = 0, it is easy to see that

the predictive density in (3.8) reduces to the N -level truncation version of (3.1).

Model comparison

To compare the predictive ability of competing models, we consider the conditional

predictive ordinate (CPO) statistic as suggested by Geisser and Eddy (1979). Let

D−i denote the observed data excluding the ith data point. For a given model, the

CPO statistic for the ith observation is defined as CPOi = f (toi |D−i)
δi S (toi |D−i)

1−δi ,

where f and S denote the marginal posterior predictive density and survival functions

of toi given D−i, respectively. A higher value of CPOi under one model implies a

better fit of that model to the ith observation. Let t = (t1, . . . , tn) be the vector of

latent true survival times and t−i be the corresponding vector with the ith element

removed. According to the hierarchical model in (3.5), given all the model parameters

Θ = (B,σ2,V,θ), we show that the CPO of Gelfand and Dey (1994) is generalized

to

CPOi =
(
E(t,Θ|D)

[
1

f(toi |t−i,Θ)δiS(toi |t−i,Θ)1−δi

])−1

. (3.9)

See Appendix B.3 for its derivation and the expressions of f(toi |t−i,Θ) and S(toi |t−i,Θ).

To give an aggregate summary measure of a model’s predictive ability, we define the

log pseudo marginal likelihood (LPML) as LPML = ∑n
i=1 log(CPOi). The LPML

is a cross-validated predictive measure: the larger a model’s LPML is, the better

predictive ability the model has. From (3.9), one can easily compute LPML from the

MCMC output.

3.4 Simulations

We conduct a simulation study to illustrate the proposed model (LDDPM-spatial)

and assess its performance. We also compare it with the Bayesian version of Li and
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Lin (2006) (PH-spatial, see Appendix B.4) and the model by De Iorio et al. (2009)

(LDDPM-ind). All analyses can be run in R using the package spBayesSurv.

We randomly select 400 locations over a spatial region [0, 40]× [0, 100] (mirroring

from the frog data) and hold out 100 of them for assessing the predictive performance,

yielding a total sample of n = 300 subjects for estimation. The log event times

y(s) = log t(s) at these 400 locations are simulated from a mixture model f(y|x) =

0.4N(3.5 + 0.5x, 12) + 0.6N(2.5 − x, 0.52) with the spatial dependence described in

Section 3.2, where x is generated independently from a uniform distribution over

(−1.5, 1.5) and Cθ is specified with θ1 = 0.98 and θ2 = 0.1. The choice of this

mixture model is based on a modification of the simulation study in De Iorio et al.

(2009). The log censoring times are simulated from a uniform distribution on (3, 4)

so that the censoring rate is about 20% ∼ 50%. This simulation study is referred to

as Scenario I, for which 100 Monte Carlo replicate datasets are generated.

First, we fit the LDDPM-spatial model using truncation level N = 10 under

the default prior specifications. We also fit the LDDPM-spatial model with Cθ ap-

proximated using the FSA approach (denoted as LDDPM-spatial-FSA), where we

experiment with m = 10 regularly spaced knots and B = 10 blocks taken as equal-

ly sized squares. Second, we fit the PH-spatial model with default priors. Finally,

we fit the LDDPM-ind model using the same priors as the LDDPM-spatial model.

For each MCMC, we retain 10, 000 scans thinned from 50, 000 after a burn-in period

of 10, 000 iterations. To assess the prediction ability and accuracy, for each above

model, we calculate the LPML and mean squared prediction error (MSPE), where

MSPE = ∑100
i=1(yi − ỹi)2/100 with yis being the held-out true log survival times and

ỹis being the corresponding predicted values based on posterior means. The models

are also compared by computing the integrated squared error (ISE) for estimated

survival curves, given by ISE =
∫ ∞

0

{
Ŝ(y|x)− S(y|x)

}2
dy, where Ŝ(y|x) and S(y|x)

are estimated and true survival functions given x, respectively.
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Table 3.1 Simulated data – Scenario I. True value, bias of the point estimator
(posterior mean), mean (across Monte Carlo replicates) of the posterior standard
deviations (MEAN-SD), standard deviation (across Monte Carlo replicates) of the
point estimator (SD-MEAN), and Monte Carlo coverage probability for the 95%
credible interval (CP) for the spatial correlation parameter θ. The averaged
computing time is also presented.

Model Parameters True BIAS MEAN-SD SD-MEAN CP
LDDPM-spatial θ1 0.98 -0.026 0.028 0.028 0.91
(32 minutes) θ2 0.10 0.017 0.026 0.025 0.95
LDDPM-spatial-FSA θ1 0.98 -0.017 0.025 0.024 0.96
(24 minutes) θ2 0.10 0.016 0.025 0.023 0.93
PH-spatial θ1 0.98 -0.065 0.037 0.047 0.61
(24 minutes) θ2 0.10 -0.009 0.023 0.030 0.78

The posterior inferences for spatial correlation parameters θ = (θ1, θ2) under each

approach are presented in Table 3.1, where the bias of corresponding point esti-

mates (i.e. posterior means), the Monte Carlo mean of posterior standard deviation

estimates (MEAN-SD), the Monte Carlo standard deviation of point estimates (SD-

MEAN), and the Monte Carlo coverage probability of 95% credible intervals (CP) are

reported. The results suggest that the point estimates of θ are almost unbiased, and

that the observed biases under the LDDPM-spatial model are much smaller than the

corresponding values under the PH-spatial model. The MEAN-SD and SD-MEAN

values are fairly close indicating that the posterior standard deviation is an appro-

priate estimator of the frequentist standard error. The CPs are around the nominal

95% level. In contrast, the PH-spatial model provides substantially lower coverage

probabilities. Furthermore, the posterior estimates with FSA are very close to those

using the exact model, suggesting that FSA is a good approximation of the correlation

matrix Cθ. Table 3.1 also presents the Monte Carlo mean of computing times under

each approach, where we see that FSA does speed up the computation as expected.

Figure 3.1 shows boxplots of the ISEs for estimated survival curves, LPMLs,

and MSPEs under the considered models. The LDDPM-spatial models (with and

without FSA) provide much smaller biases of the fitted survival functions on average,
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Figure 3.1 Simulated data – Scenario I. Panel (a) and (b): boxplots of ISEs for
fitted survival curves when x = −1 and x = 1, respectively. Panel (c): boxplots of
LPMLs. Panel (d): boxplots of MSPE. In each panel, the four models from left to
right are LDDPM-ind, LDDPM-spatial, LDDPM-spatial-FSA, and PH-spatial,
respectively.

compared with LDDPM-ind and PH-spatial, indicating that either violation of the

PH assumption or ignorance of the spatial dependence could bias the inference. As for

prediction ability and accuracy, the proposed models (with and without FSA) yield

the best prediction performance as measured by both LPML and MSPE, compared

with the PH-spatial and LDDPM-ind models. These simulations, i.e., when the truth

is known, show that the LPML is consistent with the MSPE and hence validates its

use for complex spatial models exhibiting dependence.

In Appendix B.5, we also tested the performance of LDDPM-spatial model when

the PH assumption is satisfied and compared it with the PH-spatial model. The

82



www.manaraa.com

Table 3.2 Frog data. Summary for event times, censoring status, bdwater, and
bddist.

Time to Bd (yrs) Bd status bdwater bddist (km)
5 (median) 33 (censored) 57 (bdwater=1) 1.811 (median)
1-11 (range) 276 (event) 252 (bdwater=0) 0.092-9.189 (range)

results show that two models provide almost the same boxplots of LPMLs and M-

SPEs, indicating that the LDDP-spatial model is quite competitive even when the

PH assumption is satisfied.

3.5 Application to frog data

From 1997 to 2002, all mapped lentic water bodies in Sequoia and Kings Canyon

National Parks were surveyed for mountain yellow-legged frogs. Starting in 2002 and

continuing through 2011, nearly all the frog populations that were discovered during

the initial surveys were visited every 1-2 years. A primary objective of these resurveys

was to determine the Bd status of each frog population over time. Bd attacks the

keratinized tissues of tadpole mouthparts and disrupts the normal black pigmentation

of these structures. Therefore, early efforts to detect Bd in live amphibians often relied

on visual inspections of tadpole mouthparts (see Table 4 in Knapp and Morgan, 2006).

This method was replaced by a real-time quantitative PCR assay (qPCR) in the mid-

2000s (Boyle et al., 2004), and remains the most reliable method for detecting Bd. In

our data set, Bd status was determined using the inspections of tadpole mouthparts

during resurveys conducted from 2002 to 2004 and using the qPCR after 2004. The

data consist of n = 309 frog populations that were initially discovered during park-

wide surveys conducted from 1997 to 2002, and then resurveyed regularly through

2011. The observed event time is calculated as the number of years from the initial

survey to either Bd arrival or the last resurvey. By the end of the study, about 11% of

the frog populations remained Bd-negative (censored). Table 3.2 presents a summary

of the data.
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Table 3.3 Frog data. Posterior statistics for θ1 and θ2 under the LDDPM-spatial
model assuming the exponential correlation function. The computing time is also
presented.

Model Parameters Mean Median Std. dev. 95% CI
LDDPM-spatial θ1 0.991 0.992 0.004 (0.982, 0.998)
(3.2 hours) θ2 0.133 0.130 0.040 (0.060, 0.216)

We fit the LDDPM-spatial and PH-spatial models to the data using the same

prior specifications as previous simulations. We also fit the LDDPM-ind model, the

standard PH model λi(t) = λ0(t) exp{x′iβ} as well as the PH model with a point-

referenced frailty term λi(t) = λ0(t) exp{x′iβ+w(si)} (PH-frailty), where w(s) follows

a Gaussian process (GP) with the exponential covariance function, and the baseline

hazard λ0(t) is modeled in the same way as the PH-spatial model. Based upon

examintion of trace plots for model parameters in both the simulations and real data

analyses, for each MCMC run we retain 20, 000 scans thinned from 200, 000 after a

burn-in period of 200, 000 iterations. These are grossly conservative numbers; burnin

and thinning requirements may change considerably depending on the amount of

spatial correlation and data. The Markov chains mix reasonably well for all fitted

models. For the LDDPM models, the number of components with non-negligible

mass ranged from two to five, indicating at most five components in the mixture. In

Appendix B.6, we present the posterior trace plots for θ under the LDDPM-spatial

model.

We first obtain the LPML values for all models under consideration as follows:

−276.7 for LDDPM-spatial, −304.4 for PH-spatial, −631.5 for LDDPM-ind, −705.3

for PH and −703.4 for PH-frailty. The LDDPM-spatial model provides significantly

better prediction as measured by LPML, with differences ranging from 27 to 428.

Interestingly, the PH model augmented with a GP frailty surface hardly improves

inference over the standard PH model. In what follows, we only focus on interpreting

results from the proposed model. Table 3.3 shows posterior estimates of the spatial
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dependence parameters θ1 and θ2. The partial sill parameter θ1 measures the maxi-

mum correlation between frog populations if they were located in the same location.

Our analysis shows that such a correlation is very strong, almost equal to 1. The

parameter θ2 controls the decay of spatial dependence over distance measured by kilo-

meters. For instance, the posterior mean of θ2 = 0.133 indicates that the correlation

decays by 1−e−0.133×5 ≈ 48.6% for every 5-km increase in distance. This tells us that

the spatial dependence still does not disappear even when the two frog populations

are located 5-km apart.

Figure 3.2(b) shows, for example, for frogs living in a watershed that was Bd-

positive during the previous year, the population-averaged median Bd arrival time is

cut from around 9.8 years to 4.5 years, more than half, when the distance to nearest

Bd-positive location goes from 7.731-km to 0.443-km. Interestingly, the shapes of

densities also change, going from unimodal to bimodal in Figures 3.2(a) and 3.2(d).

This figure clearly shows the invalidation of the standard AFT model for these data.

Similarly, Figure 3.2(c) shows that the non-proportional change in hazards clearly

invalidates the PH assumption. Comparing Bd-positive to Bd-negative in the wa-

tershed yields strikingly different outcomes. Populations in basins in which Bd is

present, holding the distance to the nearest Bd-positive location constant, have a

hazard spike near zero reaching up to around 0.7 (Figure 3.2(f)). This implies that

the population-averaged probability of Bd arrival within one-year is about 70%. The

corresponding survival curves cross (Figure 3.2(e)), invalidating most common semi-

parametric models. These results are for any frog population randomly found in the

study region. The simulations in Section 3.4 show that if the accompanying spatial

information s0 is also used, prediction will be accurately refined.

We are also interested in predicting which areas have overall lower survival rates.

Since the marginal distribution at each location cannot be predicted unless the asso-

ciated baseline covariates are available, we instead show a spatial map (Figure 3.3)
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Figure 3.2 Frog data. Fitted marginal densities (panels (a) and (d)), survival
curves (panels (b) and (e)) and hazard curves (panels (c) and (f)) with 90%
point-wise credible intervals for high versus low value of bddist when bdwater is
equal to 0 (panels (a), (b) and (c)) and for bdwater=0 versus bdwater=1 when
bddist is equal to its population mean of 2.717-km (panels (d), (e) and (f)). In
panels (a), (b) and (c), the results for bddist=95% and bddist=5% quantiles are
displayed as solid and dashed lines, respectively. In panels (d), (e) and (f), the
results for bdwater=0 and bdwater=1 are displayed as solid and dashed lines,
respectively.

by smoothing the predicted residual process z(s) at 10, 000 randomly simulated new

locations over the national park. One may interpret this map in a manner similar to

the frailty map in the GP frailty PH model in the absence of covariate information;

lower value of z(s) indicates lower survival rate at location s on average. Overall,

the frog populations living in darker regions became infected by Bd more earlier than

lighter areas.
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Figure 3.3 Frog data. Spatial map for the predicted residual process z(s) at 10, 000
randomly simulated new locations. Higher value implies better survival overall.

3.6 Concluding remarks

This paper presents a unified approach to the nonparametric modeling of point-

referenced survival data. The methodology is broadly illustrated on an analysis of

Bd arrival time of yellow legged frog populations throughout Sequoia-Kings Canyon

National Park. The frog data present a unique challenge and opportunity, as most

common semiparametric survival models are grossly violated and there is a strong

spatial component to the data. In the analysis, we considered two important mea-

sures of Bd proximity: bdwater and bddist; additional covariates could be easily

incorporated into the vector x in our model (De Iorio et al., 2009; Jara et al., 2010).

As expected, the closer a frog population is to a Bd-positive location, the less time

that population has until Bd infects them. This analysis shows how modern, cutting

edge statistical techniques can be used to understand a real ecological problem, here

predicting the arrival time by Bd in Bd-negative frog populations.
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One surprising result is just how poorly the PH model can do in terms of prediction

when it is wrong, even when a traditional GP spatial frailty surface is added to the

linear predictor. Zhao et al. (2009) note that in a conditional spatial survival setting,

the survival model itself is the most important factor affecting prediction, in their case

choosing among PO, PH, or AFT model. The survival model itself is more important

than whether frailties are included, or whether the frailties are spatially varying

or exchangeable. This observation also holds for the frog data: the assumptions

that most semiparametric models imply are not met. In particular, the traditional

PH model is inadequate relative to a more flexible nonparametric model. Once an

appropriate nonparametric model has been chosen, the copula model can drastically

improve prediction. It may be that, for many data sets, the marginal copula-based

geostatistical modeling approach provides superior prediction over more traditional

GP random-effects models, e.g., the types that can be fit in SAS glimmix and mixed

procedures, the free BayesX program (Brezger et al., 2005). For this reason we have

provided an efficient R package spBayesSurv for others to explore the use of these

geostatistical copula models.

One drawback of the proposed model is that covariate effects are interpreted by

examining the plots, which becomes challenging for high-dimensional covariates. Due

to the inverse of high-dimensional correlation matrices during MCMC, the LDDPM

model can also suffer longer computational times. In addition, the proposed model

cannot handle time-dependent covariates. The traditional PH model can handle

time-dependent covariates, and can have time-varying regression effects, which are

not considered here nor were considered by Li and Lin (2006). However, once the

PH model is augmented with time-varying effects, inference is also reduced to the

examination of plots (e.g. survival curves and densities) and one might as well start

with a purely nonparametric model. Future research will examine the fit of so-called

additive spatial PH models, i.e. with time-varying regression effects.
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An alternative way to incorporate spatial dependence into model (3.1) is to assume

a multivariate latent stick-breaking process prior (Rodríguez et al., 2010) for the

random mixing measure G. This approach uses a copula representation only on

the random mixing measure G but requires constraints on the atoms in the mixing

measure. The model is broadly developed for the univariate case, but multivariate

cases are problematic in that the order constraint becomes complex even for two

dimensions. The dimensionality of (βk,σ2
k) in our approach is four, but likely to be

much higher in general. By taking the full LDDPM model as the marginal in the

copula representation, analysis is greatly simplified.

Supplementary material

Appendices referenced in Sections 3.1, 3.3, 3.4, and 3.5, and sample R code fitting

the proposed model are available with this dissertation in Appendix B.
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Chapter 4

Generalized Accelerated Failure Time Spatial

Frailty Model1

Flexible incorporation of both geographical patterning and risk effects in

cancer survival models is becoming increasingly important, due in part

to the recent availability of large cancer registries. Most spatial survival

models stochastically order survival curves from different subpopulation-

s. However, it is common for survival curves from two subpopulations

to cross in epidemiological cancer studies and thus interpretable standard

survival models can not be used without some modification. Common fix-

es are the inclusion of time-varying regression effects in the proportional

hazards model or fully nonparametric modeling, either of which destroys

any easy interpretability from the fitted model. To address this issue,

we develop a generalized accelerated failure time model which allows s-

tratification on continuous or categorical covariates, as well as providing

per-variable tests for whether stratification is necessary via novel approx-

imate Bayes factors. The model is interpretable in terms of how median

survival changes and able to capture crossing survival curves in the pres-

ence of spatial correlation. A detailed Markov chain Monte Carlo algo-

rithm is presented for posterior inference and a freely-available function

frailtyGAFT is provided to fit the model in the R package spBayesSurv.

1Zhou, H., Hanson, T., and Zhang, J. (2015). Generalized accelerated failure time spatial frailty
model for arbitrarily censored data. Lifetime Data Analysis, revision submitted.
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We apply our approach to a subset of the prostate cancer data gathered

for Louisiana by the Surveillance, Epidemiology, and End Results pro-

gram of the National Cancer Institute.

Keywords: Interval-censored data; Heteroscedastic survival; Linear de-

pendent tailfree process; Median regression; Spatial data; Stratified AFT

model.

4.1 Introduction

Spatially correlated survival data are commonly observed in biomedical and epidemi-

ological studies. For example, in cancer data arising from the Surveillance Epidemi-

ology and End Results (SEER) program of the National Cancer Institute, survival

times of patients from the same or adjacent counties are often expected to be more

alike than those from distant counties due to region-specific similarities in environ-

ments and treatment resources. Simultaneously modeling the risk factors and geo-

graphical pattern that explain the differences in survival probabilities is of particular

importance for establishing policies to improve national health systems. Choosing

an appropriate survival model that takes into account the spatial dependence across

counties is a must for valid statistical inferences.

The use of parametric and semiparametric hierarchical frailty survival models has

become quite popular for analyzing spatially correlated survival data. For example,

Henderson et al. (2002) proposed a multivariate gamma frailty proportional hazards

(PH) model for incorporating spatial dependence; Li and Ryan (2002) extended the

ordinary frailty PH model by allowing frailties accommodating spatial correlation via

spatial covariance functions; Banerjee et al. (2003) considered a parametric Weibull

PH model with both lattice and point-referenced frailty specifications; Banerjee and

Carlin (2003) studied semiparametric PH frailty models using a mixture of beta

densities baseline; Banerjee and Dey (2005) developed a Bayesian hierarchical model
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for capturing spatial heterogeneity within the framework of proportional odds (PO);

Hennerfeind et al. (2006) extended the PH model with additive covariates including

both time and spatial effects; Zhao et al. (2009) considered all the three commonly

used survival models (i.e. accelerated failure time, PH and PO) with conditionally

autoregressive (CAR) prior on frailties, where the baseline function is assumed to

have a mixture of Polya trees prior; Zhang and Lawson (2011) and Wang et al.

(2012) developed parametric and semiparametric spatial frailty accelerated failure

time (AFT) models, respectively. However, all the above survival models assume a

homogeneous baseline distribution S0(·) (either parametric or nonparametric) coupled

with a parametric part of the model (e.g. PO, AFT, PH).

Stratification is commonly used in semiparametric survival modeling when the

shape of the baseline hazard changes dramatically with a discrete covariate, such as

clinic identification. Stratified analyses allow a completely different baseline hazard

for each strata. The partial likelihood of Cox (1975) is easily modified to accom-

modate stratified variables and this can be implemented, e.g. via the STRATA sub-

command in SAS procedure PHREG. Unfortunately, tests concerning the stratification

variable(s) cannot be carried out and continuous variables cannot be stratified on.

Recently, Zhao and Hanson (2011) generalized the stratified PH model to allow s-

patially smooth baseline hazards over an areal map. Similarly, Hanson et al. (2012)

considered longitudinally smoothed baseline hazards in a stratified PH model. In

both cases, spatial or longitudinal smoothing improved predictive performance over

completely independent baseline hazards or a common baseline hazard.

Semiparametric AFT models, the natural competitor to PH, have been widely

studied, including Christensen and Johnson (1988), Kuo and Mallick (1997), Walker

and Mallick (1999), Kottas and Gelfand (2001), Hanson and Johnson (2002, 2004)

and Hanson (2006a), typically using Dirichlet process mixtures or Polya trees for the

homogeneous baseline distribution. However, very limited work has been completed
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to date on stratified AFT models. Marginal models (Chiou et al., 2015) only allow

for discrete stratification and average over the strata, giving a population-averaged

interpretation for the acceleration factors. Significance of semiparametric risk factors

can be watered down and often the conditional interpretation is more relevant as,

e.g. in the case of stratifying on gender, the gender is known and should not be

averaged over. Conditionally stratified AFT has been considered, but termed “AFT

with heteroscedastic error.” In most of these models the error term in the log-linear

model specifying the survival times is simply a single index model of the covariates

times a residual, e.g. Pang et al. (2015). In such cases covariates affect the location

and scale of the log-survival times, but the overall shape of the density remains static

across covariates. To relax the assumption of common baseline distributional shape,

Hanson and Jara (2013) discussed an AFT model with general heteroscedastic error

terms. Their model can be viewed as a particular kind of censored quantile regression

(Koenker, 2008), but with heteroscedastic error that changes with covariate levels.

However, the finite sample performance of their model has not been well studied, and

how to incorporate spatial dependence into the model remains a question.

In this paper we propose a generalized accelerated failure time spatial frailty

model which allows stratification on continuous or categorical covariates, as well as

per-variable tests for whether stratification is necessary via novel approximate Bayes

factors. This model extends the linear dependent tailfree process of Jara and Hanson

(2011) to the interval-censored data setting, and also incorporates exchangeable or

spatially varying areal-level frailties. In contrast to the aforementioned index models

(Pang et al., 2015), the entire shape of the residual density changes smoothly with

strata covariates. Furthermore, the residual density is median-zero, providing great-

ly enhanced interpretation of non-strata variables in terms of how median survival

changes. The proposed model includes the traditional parametric and semiparametric

AFT spatial frailty models as special cases; therefore, it provides a means of testing
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the fit of simpler, commonly-used models. A highly novel aspect of this work is the

development of fast, approximate Bayes factors based only on a fit of the full model

for testing the adequacy of many important, commonly-fit reduced models. Methods

of obtaining posterior inference are carefully detailed and a freely-available function

frailtyGAFT is provided in the R package spBayesSurv that provides relevant out-

put including per-variable tests for stratification covariates. All Markov chain Monte

Carlo (MCMC) relies on a thoroughly-tested self-contained algorithm; no MCMC

tuning is required. In addition, functions for obtaining survival curves, etc. are avail-

able. The model accommodates general interval-censored data, including standard

right-censored data as well as special cases such as Case I (current status data) and

Case II interval-censoring.

The rest of the paper is organized as follows. Section 2 describes the proposed

model together with the MCMC implementation of posterior inference and Bayesian

hypothesis tests. Section 3 presents simulation studies to evaluate the performance

of the proposed model. Section 4 provides a detailed analysis of the SEER prostate

cancer data. The paper is concluded by a discussion in Section 5.

4.2 Generalized accelerated failure time spatial frailty model

Standard survival modeling

Let tij be a random event time associated with the jth subject in the ith county and

zij = (z1ij, . . . , zpij)′ be a related p-dimensional vector of covariates, j = 1, . . . ,mi, i =

1, . . . ,m. Let δij be a censoring indicator equaling 1 if tij is an observed event time

and equaling 0 if the event time is censored to lie in the interval (lij, uij] with lij < uij,

where lij = 0 (uij = ∞) corresponds to left (right) censoring. The event times from

the same county of residence are expected to be correlated due to sharing common

unobserved characteristics, such as region-specific similarities in environments and
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treatment resources. To incorporate spatial dependence, a traditional way is to in-

troduce a random effect (frailty) into the linear predictor of semiparametric survival

models. In this paper we consider the AFT spatial frailty model, specified as

Szij(t) = S0
(
e−z′ijβ−vit

)
, (4.1)

where vi is an unobserved frailty associated with county i, β = (β1, . . . , βp)′ is a vec-

tor of regression coefficients, and S0(t) is the baseline survival function corresponding

to zij = 0 and vi = 0. In practice, zijs are usually normalized so that S0(t) can

serve as a reference. Often S0(t) is assumed to be a static parametric or nonpara-

metric survival function, free of covariates. However this assumption implies that the

resulting survival curves are not allowed to cross for different covariates, which can

be unrealistic in practical applications (De Iorio et al., 2009). In what follows, we

present a generalized AFT spatial frailty model, where S0(t) is allowed to flexibly

vary with covariates under some identifiability constraints, yielding a particular kind

of stratified AFT model that allows stratification on continuous or categorical covari-

ates. In comparison to standard AFT spatial survival models, the proposed model

has increased flexibility while retaining interpretability of model parameters.

Spatial frailty modeling

For modeling the spatial frailties, we consider a version of conditionally autoregressive

prior (Besag, 1974). Given frailties v1, . . . , vm associated with counties 1, . . . ,m, we

define an m×m symmetric proximity matrix W with the ijth entry wij representing

some type of connection between counties i and j, where wii is customarily set to

0. Typically wij = 1 if i and j share a common boundary and zero otherwise; this

is the measure used in this paper. Note that wij could instead reflect some fashion

of meaningful “distance” between counties, e.g. Mahalanobis distance of median

household income or a ruralness measure between counties i and j. The frailties are
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assumed to follow the conditional independence assumption

vi|{vj}j 6=i, τ ∼ N

 m∑
j=1

wijvj/wi+, τ
2/wi+

 , i = 1, . . . ,m, (4.2)

where wi+ = ∑m
j=1wij and τ is a scale parameter. A little algebra yields the joint

density of frailties as

p(v) = p(v1, . . . , vm) ∝
( 1
τ 2

)m−1
2

exp
{
− 1

2τ 2 v′(Dw −W )v
}
, (4.3)

where v = (v1, . . . , vm)′ and Dw is an m × m diagonal matrix with (Dw)ii = wi+.

Note this joint density is improper since we can add any constant to all of the vis

and (4.3) is unaffected; that is, the vis are not centered. We consider the constraint∑m
i=1 vi = 0, which provides the needed centering to avoid identifiability issues. Under

this constraint, the conditionally autoregressive prior becomes

vi|{vj}j 6=i ∼ N

m−1∑
j 6=i

w∗ijvj/w
∗
i+, τ

2/w∗i+

 , i = 1, . . . ,m− 1, (4.4)

where w∗i+ = wi+ + wm+ + 2wmi and w∗ij = wij − wm+ − wmj − wmi. We prefer the

incoporation of the sum-to-zero constraint directly into the prior and model to avoid

the ad hoc adjustments typically made within the MCMC scheme itself.

Mixture of linear dependent tailfree processes prior for S0(t)

We allow the baseline survival function S0(t) to depend on certain covariates, say a

q-dimensional vector xij which is often a subset of zij, yielding the generalized AFT

(GAFT) spatial frailty model

Szij(t) = S0,xij

(
e−z′ijβ−vit

)
, (4.5)

where vi has the CAR prior (4.3) with∑m
i=1 vi = 0. For ease of handling identifiability

issues, we rewrite the model (4.5) as:

yij = log(tij) = z̃′ijβ̃ + vi + εij, (4.6)
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where z̃ij = (1, z′ij)′ includes an intercept, β̃ = (β0,β
′)′ is a vector of corresponding

coefficients, εij is a heteroscedastic error term independent with vi, and P (eβ0+εij >

t|xij) = S0,xij(t). Here we assume

εij|Gxij
ind.∼ Gxij ,

where Gx is a probability measure defined on R for every x ∈ X ; this defines a

model for the entire collection of probability measures GX = {Gx : x ∈ X} so that

each element is allowed to smoothly change with the covariates x. In particular, we

consider a mixture of linear dependent tailfree processes (LDTFP) prior (Jara and

Hanson, 2011) for GX ,

GX |L, h, α, ρ, σ2 ∼ LDTFP(h, α, ρ,ΠL,σ), σ2 ∼ P (dσ2), (4.7)

where L ∈ N+ is the level of specification of the process, h(·) is a strictly increas-

ing function linking the process with covariates, α ∈ R+ is a precision parameter

controlling the prior variability of the process, ρ(·) is an increasing function, ΠL,σ is

an L-level sequence of nested partitioning sets of R depending on a scale parameter

σ ∈ R+, and P is a prior probability measure for σ2. In this paper we consider an

inverse gamma prior on σ2, say σ−2 ∼ Γ(aσ, bσ), where Γ(a, b) refers to the gamma

distribution with shape a and rate b.

We focus on an LDTFP centered at a normal distribution Φσ with mean 0 and

variance σ2, that is, E(Gx) = N(0, σ2) for every x ∈ X . The LDTFP successively

partitions the real line into finer and finer partitions; each refinement of a partition

produces the next level of sets in the process. At level l, the process partitions R

into 2l intervals Bl,k =
(
Φ−1
σ ((k − 1)2−l),Φ−1

σ (k2−l)
]
, k = 1, . . . , 2l, with Bl,2l being

right-open, so that an L-level set of nested partitions is defined as ΠL,σ = {Bl,k :

k = 1, . . . , 2l, l = 1, . . . , L}. Note that Bl,k = Bl+1,2k−1 ∪ Bl+1,2k. Given that an

observation is in set k at level l, say Bl,k, it could then be in either Bl+1,2k−1 or

Bl+1,2k at level l + 1 with conditional probability Yl+1,2k−1 or Yl+1,2k respectively.
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Clearly they must sum to one for every x ∈ X , and so we consider logistic regression

for each of these probabilities, allowing the entire shape of the density to change

with covariates. Specifically, we assume Yl+1,2k−1(x) = h(x̃′γ l,k) and Yl+1,2k(x) =

1 − h(x̃′γ l,k), where x̃ = (1,x′)′ includes an intercept, γ l,k = (γl,k,0, . . . , γl,k,q)′ is a

vector of coefficients, and h(·) = exp{·}
1+exp{·} . Finally, there are 2L−1 regression coefficient

vectors γ = {γ l,k}, e.g. for L = 3, {γ0,1,γ1,1,γ1,2,γ2,1,γ2,2,γ2,3,γ2,4}. Let X be the

n× (q + 1) design matrix of covariates x̃ijs, where n = ∑m
i=1mi. Following Jara and

Hanson (2011), each γ l,k is assigned an independent normal g-prior (Zellner, 1983),

γ l,k ∼ Nq+1
(
0, 2n

αρ(l+1)(X
′X)−1

)
, where ρ(l) = l2. Furthermore, the LDTFP can be

specified that for every x ∈ X , Gx is almost surely a median-zero probability measure

by setting γ0,1 ≡ 0. This is important to avoid identifiability issues.

The precision parameter α ∈ R+ controls how closely the random distribution Gx

follows Φσ in terms of L1 distance (Hanson et al., 2008). Large values of α indicate

a strong belief that εijs are closely iid from Φσ. Smaller values of α, on the other

hand, allow more pronounced deviations of Gx from Φσ. We consider a gamma prior

on α, say, α ∼ Γ(a0, b0), as suggested in Jara and Hanson (2011); the full conditional

distribution for α is also a gamma distribution. As for the choice of L, we typically

consider L ≈ log2(n/n0), where n is the sample size and n0 (usually from 5 to 10) is

a “typical” number of observations falling into each set at level L (Hanson, 2006a).

However, this choice is conservative for the LDTFP relative to Polya trees (Jara

and Hanson, 2011). Hanson (2006a) observed that the LPML remains essentially

unchanged or gets slightly worse after a certain level L; this is confirmed for the

LDTFP in (Zhou et al., 2015a, Chapter 2).

Based on the above LDTFP specification, given γ, σ and x, Gx is known. Define

the function kσ(x) to be the index k ∈ {1, . . . , 2L} such that x falls into set BL,k,

i.e. kσ(x) = d2LΦσ(x)e, where dxe is the ceiling function, the smallest integer greater
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than or equal to x. Further define probability px(k) for k = 1, . . . , 2L as

px(k) = Gx{BL,k|γ, σ} =
L∏
l=1

Yl,dk2l−Le(x).

The resulting density of εij|xij is given by

gxij(e) = 2Lφσ(e)pxij{kσ(e)}, (4.8)

where φσ is the density function corresponding to Φσ. The cumulative distribution

function associated with gxij(e) is given by

Gxij(e) = pxij{kσ(e)}
{

2LΦσ(e)− kσ(e)
}

+
kσ(e)∑
k=1

pxij(k). (4.9)

As shown by Jara and Hanson (2011), the LDTFP has appealing theoretical

properties such as continuity as a function of the covariates, large support on the

space of conditional density functions, straightforward posterior computation relying

on algorithms for fitting generalized linear models, and the process closely matches

conventional Polya tree priors (see, e.g., Hanson, 2006a) at each value of the covariate,

which justify its choice here.

Regarding the priors for regression coefficients β̃ and τ 2, typically β̃ ∼ Np(m0,S0)

independent of τ−2 ∼ Γ(aτ , bτ ) are considered; these can both be chosen to relatively

vague. In summary the proposed GAFT spatial frailty model takes the following

hierarchical structure:

(1− δij)|tij = I(lij < tij ≤ uij), j = 1, . . . ,mi, i = 1, . . . ,m

yij = log(tij) = z̃′ijβ̃ + vi + εij, j = 1, . . . ,mi, i = 1, . . . ,m

εij|γ, σ
ind.∼ gxij(·), j = 1, . . . ,mi, i = 1, . . . ,m

γ l,k|α
ind.∼ Nq+1(0, 2n

α(l + 1)2 (X′X)−1), k = 1, . . . , 2l, l = 1, . . . , L− 1

α ∼ Γ(a0, b0), σ−2 ∼ Γ(aσ, bσ)

vi|{vj}j 6=i, τ ∼ N

 m∑
j=1

wijvj/wi+, τ
2/wi+

 , i = 1, . . . ,m

τ−2 ∼ Γ(aτ , bτ ), β̃ ∼ Np+1(m0,S0).

(4.10)
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We next describe a Markov chain Monte Carlo (MCMC) scheme for obtaining poste-

rior inference, which can be implemented using the function frailtyGAFT available

in the R package spBayesSurv.

Posterior computation

In this section we describe an MCMC sampling algorithm for the proposed model,

arrived at after a considerable amount of trial and error, in terms of what provides

reasonable mixing and speed. By now, MCMC schemes are a standard part of the

Bayesian statistician’s toolbox, we refer the reader to Robert and Casella (2005) for

an overview. Posterior MCMC samples for the model parameters are used for all

inference of interest. A complete description of updating steps is available in the

supplementary material.

Let Ω = (yc, β̃,v, τ 2, σ2,γ, α) denote collectively the model parameters to be up-

dated, where yc = {yij : δij = 0} are censored log-survival times. The yij ∈ yc

are sampled using the single-variable slice sampling method (Neal, 2003), where the

“stepping out” procedure is performed for finding an interval around the current

iteration value and “shrinkage” procedure is applied for sampling from the inter-

val. The median regression coefficients β̃ may be conveniently updated using adap-

tive Metropolis-Hastings (Haario et al., 2001) with multivariate Gaussian proposals.

However this method suffers extremely low acceptance rates when the LDTFP is far

from its centering normal distribution. We instead use a single-variable slice sam-

pling step to update each component of β̃. The updating of spatial effects v and

baseline variance σ are both easily done again via single-variable slice sampling step-

s. For the LDTFP regression parameters γl,k, we utilize Metropolis-Hastings steps

with Gaussian proposals based on iterative weighted least squares (Gamerman, 1997),

recognizing that the γl,k full conditionals are proportional to logistic regression like-

lihoods. The hyperparameter τ 2 and α are sampled according to their conjugate full
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conditional distributions.

Given a set of posterior samples {Ω(s), s = 1, . . . , S}, all the inference targets can

be easily estimated. For example, the baseline survival function S0,x(t) = P (eβ0+ε >

t|x) given the covariate x is estimated by

S0,x(t) = 1
S

S∑
s=1

{
1−G(s)

x

(
log t− β(s)

0

)}
, (4.11)

where G(s)
x (·) is given in (4.9) with all unknown parameters replaced by corresponding

posterior values in the sth iterate.

Bayesian hypothesis testing

The proposed GAFT spatial frailty model includes the following as important special

cases: an AFT spatial frailty model with nonparametric baseline where Gx = Gx′ for

all x = x′ and parametric baseline model Gx = N(0, σ2) for all x ∈ X . Hypothesis

tests can be constructed based on the LDTFP coefficients {γ l,k : k = 1, . . . , 2l, l =

1, . . . , L− 1}, where γ l,k = (γl,k,0, . . . , γl,k,q)′. Let γ l,k,−j denote the subvector of γ l,k

without element γl,k,j for j = 0, . . . , q. Set Υj = (γl,k,j, k = 1, . . . , 2l, l = 1, . . . , L−1)′,

Υ−j = (γ ′l,k,−j, k = 1, . . . , 2l, l = 1, . . . , L − 1)′ and Υ = (γ ′l,k, k = 1, . . . , 2l, l =

1, . . . , L− 1)′. Testing the hypotheses H0 : Υ−0 = 0 and H0 : Υ = 0 leads to global

comparisons of the proposed model with the above two special cases respectively.

Similarly, we may also test the null hypothesis H0 : Υj = 0 for the jth covariate

effect of x on the baseline survival, j = 1, . . . , q. We use Bayes factors to accomplish

these hypotheses.

Suppose we wish to test H0 : Υj = 0 versus H1 : Υj 6= 0, for fixed j ∈ {1, . . . , q}.

The Bayes factor between hypotheses H1 and H0 is defined as

BF10 =
∫
L(Υj,ψ)p(Υj,ψ)d(Υj,ψ)∫
L(Υj = 0,ψ)p0(ψ)dψ , (4.12)

where ψ is the remaining model parameters under the alternative, p0(ψ) and p(Υj,ψ)

are the prior probability densities under H0 and H1 respectively, D is the observed
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data, and L(Υj,ψ) is the likelihood function. According to the Savage-Dickey density

ratio expression (Dickey, 1971), if

p(ψ|Υj = 0) = p0(ψ), (4.13)

then BF10 can be written as

BF10 = p(Υj = 0)
p(Υj = 0|D) , (4.14)

where p(Υj) =
∫
p(Υj,ψ)dψ and p(Υj|D) =

∫
p(Υj,ψ|D)dψ are the marginal prior

and posterior density of Υj respectively under H1. We show in Proposition 1 that

the assumption (4.13) holds when precision parameter α is fixed.

Proposition 4.1. Assume that γ l,k|α
ind.∼ Nq+1

(
0, 2n

αρ(l+1)(X
′X)−1

)
under H1 and

γ l,k,−j|α
ind.∼ Nq

(
0, 2n

αρ(l+1)(X
′
−jX−j)−1

)
under H0, where α is fixed and X−j is the

design matrix X excluding the (j + 1)th column. Then the assumption (4.13) holds,

and

p(Υj = 0|α) =
L−1∏
l=1

2l∏
k=1

φ

(
0
∣∣∣∣0, 2n

αρ(l + 1)(X′X)−1
jj

)
. (4.15)

where (X′X)−1
jj is the (j + 1, j + 1)th element of (X′X)−1, and φ(·|µ, σ2) denotes the

normal density with mean µ and variance σ2.

Proof. Since γ l,k|α follows a multivariate normal, (γ l,k,−j|γ l,k,j = 0, α) still follows a

multivariate normal distribution

p(γ l,k,−j|γ l,k,j = 0, α) ∝ exp
{
−αρ(l + 1)

4n γ ′l,k(X′X)γ l,k
}

∝ exp
{
−αρ(l + 1)

4n γ ′l,k,−j(X′−jX−j)γ l,k,−j
}

∝ Nq

(
0, 2n
αρ(l + 1)(X′−jX−j)−1

)
.

This implies that p(γ l,k,−j|γ l,k,j = 0, α) = p0(γ l,k,−j|α) and by independence assump-

tion p(Υ−j|Υj = 0, α) = p0(Υ−j|α). In addition, α is fixed and Υ−j is independent

with all other parameters in ψ, thus the assumption (4.13) holds. It is easy to evaluate

p(Υj = 0) by noting the properties of multivariate normal.
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Now consider putting a prior π and π0 on α under H1 and H0 respectively, as-

suming the same priors on γ l,k as Proposition 4.1. Then we have

p(Υ−j|Υj = 0) =
∫
p(Υ−j|Υj = 0, α)p(Υj = 0|α)π(α)

p(Υj = 0) dα

=
∫
p0(Υ−j|α)p(Υj = 0|α)π(α)

p(Υj = 0) dα

(4.16)

and p0(Υ−j) =
∫
p0(Υ−j|α)π0(α)dα. To satisfy (4.13), we need equation (4.16) equal

to p0(Υ−j), which holds when

π0(α) = p(Υj = 0|α)π(α)
p(Υj = 0) .

Let Γ(·|a, b) denote the density of Γ(a, b) distribution. Taking π(·) = Γ(·|a0, b0) yields

that π0(·) = Γ(·|a0 + 2L−1 − 1, b0). However, π0 puts too much probability on H0

against H1, so that H0 can be hardly rejected. To avoid this undesirable situation,

we take π0 = π and apply the generalized Savage-Dickey density ratio approach,

proposed by Verdinelli and Wasserman (1995), which does not rely on the assumption

(4.13). We show in Proposition 4.2 that BF10 can be written as a product of two

quantities and both can be estimated from posterior simulation.

Proposition 4.2. Assume the same priors on γ l,k as Proposition 4.1 and additional

prior on α as π(α) = Γ(α|a0, b0) under both H1 and H0. Then given existence of all

involved expectations, BF10 can be written as

BF10 = {p(Υj = 0|D)}−1
{
E

[
1

p(Υj = 0|α)

]}−1

, (4.17)

where the expectation is with respect to p(α|Υj = 0,D).

Proof. Note that p(Υj = 0,ψ|D)
∫
L(Υj,ψ)p(Υj,ψ)d(Υj,ψ) = L(Υj = 0,ψ) ×
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p(Υ0,ψ) and p(Υj = 0|ψ) = p(Υj = 0|α), we have

BF−1
10 = p(Υj = 0|D)

∫ L(Υj = 0,ψ)p(ψ)
p(Υj = 0|D)

∫
L(Υj,ψ)p(Υj,ψ)d(Υj,ψ)dψ

= p(Υj = 0|D)
∫ L(Υj = 0,ψ)p(ψ)p(ψ|Υj = 0,D)
p(Υj = 0,ψ|D)

∫
L(Υj,ψ)p(Υj,ψ)d(Υj,ψ)dψ

= p(Υj = 0|D)
∫ p(ψ)p(ψ|Υj = 0,D)

p(Υj = 0,ψ) dψ

= p(Υj = 0|D)
∫ ∫ 1

p(Υj = 0|ψ)p(ψ−α, α|Υj = 0,D)dψ−αdα

= p(Υj = 0|D)
∫ ∫ 1

p(Υj = 0|α)p(ψ−α, α|Υj = 0,D)dψ−αdα

= p(Υj = 0|D)
∫ 1
p(Υj = 0|α)p(α|Υj = 0,D)dα,

where (ψ−α, α) = ψ.

As noted by Raftery (1996), only a crude approximation of Bayes factor is need-

ed. Thus we estimate the marginal posterior density p(Υj|D) by an M = 2L − 2

dimensional multivariate normal distribution using MCMC posterior samples. That

is, we assume p(Υj|D) ≈ φM(Υj; m̂j, Ŝj), where φM(·; m,S) is a multivariate normal

density with mean m and covariance matrix S, and m̂j and Ŝj are estimated by the

sample mean and covariance of the posterior sample for Υj. To avoid of drawing

a sample from p(α|Υj = 0,D), we assume that p(α|Υj = 0,D) ≈ p(α|D) under

H0. We then approximate {E [1/p(Υj = 0|α)]}−1 by p(Υj = 0|α̂), where α̂ is the

posterior mean of α. Thus, we can estimate the Bayes factor by

B̂F 10 = p(Υj = 0|α̂)
φM(Υj = 0; m̂j, Ŝj)

, (4.18)

where p(Υj = 0|α) is given in (4.15).

4.3 Simulation studies

We performed simulations to illustrate and assess the proposed approach using the

provided R package spBayesSurv. The data were simulated from the GAFT model
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(4.6), where z̃ij = (1, z1ij, z2ij)′ with z1ij
iid∼ N(0, 1) and z2ij

iid∼ Bernoulli(0.5), β̃ =

(β0, β1, β2)′ = (−1, 1,−0.5)′, vi follows the CAR model (4.3) with τ 2 = 0.1 and

W being the Louisiana proximity matrix used in the SEER data analysis, and i =

1, . . . , 64, j = 1, . . . , 10. We considered three different distribution settings for the

error term εij:

Scenario I: εij|xij ind.∼


N(0, 0.82) if xij = 0

0.5N(−1, 0.52) + 0.5N(1, 0.52) if xij = 1

Scenario II: εij i.i.d∼ 0.5N(−1, 0.52) + 0.5N(1, 0.52)

Scenario III: εij i.i.d∼ N(0, 0.82)

where xij = z2ij. Note that the first scenario is not a particular case of the proposed

model; the second and third scenarios are included to examine the behaviour of

the proposed approach when a standard parametric or semiparametric AFT model

(with covariate-free error term) is correct. Non-informative right-censoring times were

simulated from a Uniform(0.5, 1) distribution so that the censoring rate is around

25%. For each simulation scenario, a total of 500 replicates of the dataset were

generated. We then fitted the proposed model with both covariates included in the

LDTFP modeling part, i.e. x̃ij = z̃ij, using the following prior settings: L = 4,

a0 = 5, b0 = 1, m0 = 03, S0 = 105I3, aσ = bσ = 2.001, aτ = bτ = 0.1. For each

MCMC algorithm, 10, 000 scans were thinned from 100, 000 after a burn-in period of

10, 000 iterations.

Table 4.1 presents the proportions of Bayes factor BF10 greater than 3, 10 and

30 for the hypotheses discussed in Section 4.2. The results demonstrate that the

proposed Bayes factor is able to identify which covariate truly affects the shape of

the error term and which one does not, with very low wrong-decision rates across all

the scenarios. The cutpoint 3 gives around 0.05 type I error in Scenarios I and II.
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Table 4.1 Simulation data. The proportions of BF10 greater than 3, 10 and 30,
respectively, across Monte Carlo simulations.

Scenario H0 % BF10 > 3 % BF10 > 10 % BF10 > 30
I Υ1 = 0 0.056 0.004 0.004

Υ2 = 0 1 1 1
II Υ1 = 0 0.052 0.016 0.008

Υ2 = 0 0.018 0.008 0.004
Υ−0 = 0 0.022 0.004 0.002
Υ = 0 1 1 1

III Υ1 = 0 0.096 0.016 0
Υ2 = 0 0.080 0.010 0.002
Υ−0 = 0 0.124 0.018 0
Υ = 0 0.116 0.030 0.008

Table 4.2 Simulation data. True value, averaged bias (BIAS) and posterior
standard deviation (PSD) of each point estimate (i.e. posterior mean), standard
deviation (across Monte Carlo simulations) of the point estimate (SD-Est) and
coverage probability (CP) for the 95% credible interval.

Scenario Parameter True BIAS PSD SD-Est CP
I β0 -1.0 0.011 0.069 0.061 0.966

β1 1.0 0.005 0.056 0.050 0.958
β2 -0.5 0.010 0.129 0.104 0.976
τ 2 0.1 0.034 0.055 0.045 0.978

II β0 -1.0 0.019 0.126 0.105 0.966
β1 1.0 -0.005 0.078 0.068 0.970
β2 -0.5 0.005 0.171 0.150 0.966
τ 2 0.1 0.029 0.052 0.041 0.982

III β0 -1.0 0.004 0.062 0.055 0.980
β1 1.0 0.004 0.048 0.046 0.960
β2 -0.5 -0.001 0.085 0.076 0.968
τ 2 0.1 0.039 0.061 0.047 0.982

Table 4.2 summaries the inference results for regression parameters, including the

averaged bias (BIAS) and posterior standard deviation (PSD) of each point estimate,

the Monte Carlo standard deviation of the point estimate (SD-Est) and the coverage

probability (CP) of the 95% highest posterior density interval. The results show

that the point estimates (i.e. posterior means) of β̃ are almost unbiased under all
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three scenarios, while the point estimates of τ 2 are positively biased. This is not

surprising, as the posterior distribution of τ 2 is grossly right-skewed, in which case

the mode would be an ideal choice for the point estimate. By using the posterior mode

(calculated from a kernel-smoothed density) as a point estimate of τ 2, the averaged

biases reduce to 0.007, 0.006 and 0.010 under Scenarios I, II and III, respectively.

The PSD values are all slightly greater than, but fairly close to the SD-Est values,

suggesting that the posterior standard deviation is an appropriate estimator of the

frequentist standard error. The CP values are all close to the nominal 95% level

or slightly greater. Here all covariates are included in the LDTFP baseline survival

function regardless of their significance. Note that the use of Bayes factors allows us

to detect which covariates need to be stratified on and how significant they are. Based

on the test results, we can always remove the covariates that have BF10 < 1 from the

LDTFP modeling. For this reason, in the online material we also report the parameter

inferences with the LDTFP specified according to the truth, i.e., x̃ij = (1, z2ij)′ under

Scenario I and x̃ij = 1 under Scenarios II & III. The results reveal that the CP values

for β̃ are now around the nominal 95% except the CP for β2 in Scenario I. It seems that

our approach tends to slightly overestimate the standard deviation of the covariate

coefficient when that covariate highly affects the baseline function. Figure 4.1 presents

the average, across the 500 simulated data sets, of the fitted density and survival

functions of log survival times for some specific covariate values. The results reveal

that the proposed model is capable to capture the crossing behaviour of survival

curves very well.

In Section 3 of online material, additional simulation results are presented for the

sensitivity analyses on the prior of α and the choice of L. The parameter estimates

and hypothesis tests are essentially not affected by the choices of hyperparameters

in the prior of α, although we observe that the curve estimates under α ∼ Γ(2, 2)

are slightly closer to the truth than those under α ∼ Γ(20, 2). Regarding the impact
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Figure 4.1 Simulated data. Mean, across simulations, of the posterior mean of the
density functions (left three panels) and survival functions (right three panels) of
log survival times under Scenario I (panel a and b), Scenario II (panel c and d) and
Scenario III (panel e and f). The curves in each panel of a and b are for
(z, x) = (1.5, 1) (initially left curve) and (z, x) = (1, 0). The other curves are for
(z, x) = (1, 0). The true curves are represented by continuous lines. The results
under the proposed model are represented by dashed lines.
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of L, we find that parameter and curve estimates are not sensitive to the choice of

L, but hypothesis tests are more sensitive. For instance, when L increases from 4

to 5, the Bayes factor values become larger overall, especially for Scenario III (i.e.

when the log-normal AFT is the truth), making our tests more conservative. For

further comparison, we also fitted the censored quantile regression model (Portnoy,

2003) using the function crq available in the quantreg R package (Koenker, 2008)

under Scenario I, but with the data generated without frailties. Note that crq does

not allow spatial information. In comparison to our approach, the results show that

crq provides almost two times greater standard deviation estimates for non-intercept

coefficients, and more troubling, the coverage probability for estimating β2 is much

lower than 95%. These findings inform us that ignoring heteroscedastic errors could

result in badly overestimated standard deviations and low coverage probabilities.

4.4 Application to SEER prostate cancer data

We apply the proposed model to the prostate cancer survival data from the SEER

program of the National Cancer Institute (see http://seer.cancer.gov/). The da-

ta set we consider consists of a cohort of 2999 men from the 64 counties of Louisiana,

who have been diagnosed with prostate cancer in 2002, with follow-up continued

through the end of 2011. In our analysis, the observed survival time is calculated

as the amount of years from diagnosis to either death or the last follow-up, where

death can be from any cause. By the end of 2011, 62.1% of patients who survived

until the last follow-up are treated as right-censored. The observed survival time

in years and county of residence at diagnosis are available for each individual. The

individual-specific covariates at diagnosis include: age, race (white and black), SEER

summary stage (localized/regional and distant), marital status at diagnosis (married

and other), grade of tumor differentiation (well/moderately differentiated and poor-

ly/not differentiated), where the first category in each above parenthesis is treated
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Table 4.3 SEER data. Summary characteristics for Louisiana prostate cancer
patients diagnosed in 2002 with follow-up continued through the end of 2011.

Continuous Mean Median Std. Dev.
follow-up (yrs) 7.63 9.17 2.87
Age (yrs) 67.52 68.00 9.45
Categorical Level Count Proportion
Race White 2159 0.72

Black 840 0.28
Stage Local/Regional 2875 0.96

Distant 124 0.04
Marital Married 2330 0.78

Other 669 0.22
Grade well/moderately differentiated 2220 0.74

poorly/not differentiated 779 0.26

as reference. Table 4.3 presents several summary statistics for the data. Since the

effects of stage, marital status and grade on baseline survival functions are not signif-

icant (per-variable Bayes factor is less than 1) based our initial model fitting via the

proposed approach, we exclude them in modeling baseline functions presented below.

Thus we have 5-dimensional zij and 2-dimensional xij.

We fit the proposed GAFT spatial frailty model using the corresponding variants

of the algorithm described in Section 4.2 and similar prior specifications used in the

simulation study. Based upon examination of trace plots for model parameters, we

run a single chain of 350,000, where 10,000 scans are thinned after a burn-in period

of 50,000. In Section 4 of supplementary material, we present the posterior trace

plots for β̃, α and σ2, and their autocorrelation function (ACF) plots together with

effective samples sizes. The Markov chain mixed reasonably well regardless of the

high dimension of parameters in our model.

For comparison, we further fit a semiparametric AFT spatial frailty model, where

the baseline survival is fitted using the LDTFP but with intercept only, and a GAFT

model without frailties. The three models are compared using the log pseudo marginal
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Table 4.4 SEER data. Posterior means (95% credible intervals) of fixed effects β̃
from fitting the proposed model and spatial frailty semiparametric AFT. The
LPML is also shown for each model. Results are based on standardized ages.

Covariates GAFT/CAR AFT/CAR GAFT
(LPML=-4110.5) (LPML=-4115.6) (LPML=-4116.3)

Intercept 2.85( 2.74, 2.96) 2.87( 2.77, 2.96) 2.87( 2.79, 2.96)
Age -0.55(-0.62, -0.48) -0.56(-0.62, -0.49) -0.55(-0.61, -0.49)
Race -0.23(-0.35, -0.11) -0.29(-0.40, -0.19) -0.23(-0.34, -0.14)
Marital -0.33(-0.45, -0.22) -0.32(-0.43, -0.20) -0.30(-0.40, -0.21)
Grade -0.23(-0.33, -0.12) -0.25(-0.36, -0.14) -0.21(-0.31, -0.12)
Stage -1.55(-1.76, -1.34) -1.52(-1.75, -1.29) -1.57(-1.78, -1.37)

Table 4.5 SEER data. Bayes factors for testing each covariate effect on the
baseline survival.

Covariates Intercept Age Race Overall
BF10 > 1000 24.5 4.7 61.0

likelihood (LPML) developed by Geisser and Eddy (1979). Let fzij(·) be the density

function corresponding to Szij(·). In the context of the proposed model, the LPML is

defined as LPML = ∑n
i=1

∑ni
j=1 log(CPOij), where CPOij, referred to as conditional

predictive ordinate, is given by [fzij (tij)δij
{
Szij(lij)− Szij(uij)

}1−δij |D(ij)] with D(ij)

denoting the remaining data after excluding the ijth data point Dij. A larger value of

LPML indicates better predictive ability for the corresponding model. Furthermore,

Geisser and Eddy (1979) discussed the exponentiated difference in LPML values from

two models to obtain the so called pseudo Bayes factor (PBF). The PBF is a surro-

gate for the traditional Bayes factor, and can be interpreted similarly, but is more

analytically tractable, less sensitive to prior specifications, and does not suffer from

Lindley’s paradox. The method suggested by Gelfand and Dey (1994) can be used

to estimate the CPO statistics from MCMC output.

Table 4.4 summarizes the results. The proposed GAFT model with CAR frailties

has the largest LPML compared to the semiparametric AFT frailty model and non-

frailty GAFT model, indicating that both allowing baseline survival function varying
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with covariates and taking into account spatial correlation improve model fit accord-

ing to LPML. Note that the pseduo Bayes factor for the proposed model versus the

AFT model is e4115.6−4110.5 ≈ 164, indicating a decisive win for the GAFT/CAR mod-

el. Regarding the regression coefficient estimates, we see that all the three models

give very similar covariate effects except for race, where GAFT/CAR model gives

an estimate that is 26% higher than that from AFT model. This can be explained

by the moderate significance of race on the baseline survival function based on the

Bayes factors for per-value tests, as shown in Table 4.5. The age also highly affects

the baseline survival according to the Bayes factor value.

For sake of visualization, Figure 4.2 presents the posterior mean curves under the

proposed model. Panel (a) shows the baseline survival curves for white patients at

three different ages. We see that the baseline curves coincide up to 18 years and then

become very different, indicating that patients diagnosed at different age tend to have

different baseline survival curves. Panel (b) shows that white and black patients have

crossing baseline survival curves although they are not that significant. Panels (c)

and (d) present the corresponding baseline densities, where we see that the baseline

density changes from one mode to two as age increases. These results indicate that

the traditional AFT assumption is violated for this data set, and the proposed model

provides more valid inference. Finally, the final covariate-adjusted survival curves are

presented for patients with three different ages in panel (e) and for white versus black

patients in panel (f), where we see that race has a significant impact on survival up

to 20 years after the diagnosis date.

The posterior means of spatial frailties for each county are mapped in Figure 4.3.

The map shows that northern counties have relatively lower frailties and several

counties in the southeast also exhibit lower spatial frailties. Since the frailties are

additive to the logarithm of survival times in the proposed model, survival times

are expected to be shorter in the regions with lower frailties. The mortality rates
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Figure 4.2 SEER data. Posterior mean curves under the proposed model. Panel
(a) shows the baseline survival curves for white patients with age=40 (solid), age=70
(dashed) and age=100 (dotted). Panel (b) shows the baseline survival curves for
white (solid) versus black (dashed) patients with age at the population mean (67.5).
Panels (c) and (d) show their corresponding baseline densities. Panel (e) presents
the final survival curves for patients with age=40 (solid), age=70 (dashed) and
age=100 (dotted), holding other covariates at the reference levels. Panel (f) presents
the final suvival curves for white (solid) versus black (dashed) patients, holding
other categorical covariates at the reference levels and the age at the population
mean (67.5). The 90% point-wise credible intervals are shown in gray areas.113
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Figure 4.3 SEER data. Maps of the 2002 mortality rate (panel a) and CAR
frailties (panel b) in the proposed model for Louisiana counties in 2002.

(percentages of death) based on our data set are also mapped for comparison, where

we see that the counties showing lower frailties typically correspond higher mortality

rates, providing support for the frailty modeling approach.

Based on the results from fitting the proposed model with CAR frailties as shown

in Table 4.4, we see that all age, race, stage, marital status and grade are significant

risk factors for survival of prostate cancer. Finally, note that e−0.23 ≈ 0.8. The medi-

an lifetime for blacks is about 80% of that for whites, adjusting for other covariates

and county of residence. The GAFT/CAR model retains the easy interpretability in

terms of typical lifetime as traditional AFT models, yet allows for a smoothly chang-

ing, heteroscedastic baseline survival. In Section 4 of supplementary material, the

covariate effects are also compared with those obtained under the censored quantile

regression model (Portnoy, 2003), where we note that the standard deviation for race

effect is five times greater than that under GAFT, and consequently race becomes

insignificant.
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4.5 Discussion

We have proposed a general median-regression survival model with CAR frailties

that includes the traditional semiparametric and parametric AFT models as special

cases. The overall strength of the proposed model is that robust, flexible modeling

assumptions make it appropriate for use in most real data applications, leading to

significant improvement of the prediction of cancer survival in epidemiological cancer

studies. We have also developed an efficient R function frailtyGAFT in the package

spBayesSurv, as well as plotting functions, LPML estimation, etc., so others can

easily use the proposed model.

Along with a general, flexible spatial survival model that retains easy interpretabil-

ity but allows for crossing survival curves, we also offer simple tests for adequacy of the

traditional AFT model with static nonparametric S0, as well as per-variable tests for

whether covariates impact S0, implemented in the frailtyGAFT function. Crossing or

partially coinciding survival curves is fairly common (Bouliotis and Billingham, 2011;

Logan et al., 2008) in clinical studies. Often survival curves coincide or are negligibly

different during the initial period and differences start to occur after treatments take

effect. Panel (a) in Figure 4.2 shows coinciding survivals in the baseline S0,x(t) for

about 18 years post-diagnosis in the Louisiana SEER data, then marked differences

for white patients with different diagnosed ages, holding other covariates constant.

Our analysis of the Louisiana SEER data shows a highly significant difference in sur-

vival between blacks and whites; adjusting for county and other covariates, whites

have a median lifetime that is about 26% greater than blacks. However, the tradi-

tional censored quantile regression of Portnoy (2003) fails to detect such significant

racial difference.

A referee has made the following observation. It is possible to consider a multi-

variate CAR on the (p+ 1)-dimensional vi (Gelfand and Vounatsou, 2003), yielding

the model log(tij) = z̃′ij(β̃ + vi) + εij, thus allowing for county-level changes in how
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predictors affect survival. The β̃ are interpreted as overall regression effects and vi

are county-level deviations from β̃.
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Appendix A

Supplement to Chapter 2

A.1 Mixtures of linear dependent Tailfree processes

A tailfree process is a stochastic process with trajectories on a given space of proba-

bility distributions. Tailfree processes generalize Polya tree processes, which further

generalize Dirichlet processes. Freedman (1963) and Fabius (1964) introduced and

developed tailfree processes. Ferguson (1974) summarized, extended, and made con-

nections among these developments.

Let Gθ be a family of distribution functions on R, indexed by θ ∈ Θ, serving to

center the random probability measure G. A tailfree random distribution G with

support on the real line is defined by allocations of conditional probabilities to in-

creasingly refined partitions of R. Let Em = {ε1 · · · εm : εi = 0, 1; i = 1 . . . ,m} be the

m-fold Cartesian product for all m ∈ N except E0 = {∅}, and set Ej = ⋃j
m=0E

m for

every j = 1, 2, . . . , J , where J is a positive integer. For convenience, we use the con-

vention that ε0 = 0 and ε1 = 1 for ε = ∅. At each level j ∈ {1, 2, . . . , J}, we partition

R into 2j sets πjθ = {Bθ(ε) : ε ∈ Ej}, where Bθ(ε) = (G−1
θ (k/2j), G−1

θ ([k + 1]/2j)],

with G−1
θ being the quantile function of Gθ, and k being the decimal representation of

ε = ε1 · · · εj ∈ Ej. For ε = ∅, define Bθ(ε) = R. These partition sets produce dyadic

splits: Bθ(ε) = Bθ(ε0)∪Bθ(ε1), for ε ∈ EJ−1. For each partition set at level j, indexed

by the binary number ε ∈ Ej, a tailfree construction assigns two random condition-

al probabilities, Yε0 = G{Bθ(ε0)|Bθ(ε)} and Yε1 = 1 − Yε0 = G{Bθ(ε1)|Bθ(ε)}, to

the offspring sets of Bθ(ε). The collections {Y0}, {Y00, Y10},{Y000, Y010, Y100, Y110}, . . . ,
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are mutually independent. Assume that G follows Gθ on sets in the finest partition

πJθ and note that G(Bθ(ε)) = ∏j
i=1 Yε1···εi for every ε ∈ EJ . Given the J partitions

ΠJ,θ = ⋃J
j=1 π

j
θ, a particular finite tailfree process is defined in Table A.1 for j = 1, 2, 3.

Table A.1 Principle scheme to define a tailfree process centered around Gθ

R
Bθ(0) Bθ(1)

Y0 = G{Bθ(0)|R} Y1 = G{Bθ(1)|R}
Bθ(00) Bθ(01) Bθ(10) Bθ(11)

Y00 = G{Bθ(0)|Bθ(0)} Y01 = G{Bθ(01)|Bθ(0)} Y10 = G{Bθ(10)|Bθ(1)} Y11 = G{Bθ(11)|Bθ(1)}
Bθ(000) Bθ(001) Bθ(010) Bθ(011) Bθ(100) Bθ(101) Bθ(110) Bθ(111)

Y000 Y001 Y010 Y011 Y100 Y101 Y110 Y111

A Polya tree prior is defined by assigning to the conditional probabilities {Yε0}ε∈EJ−1

independent beta distributions, that is, Yε0 ind.∼ Beta(cd2
ε0, cd

2
ε0), where c > 0 is the

precision parameter and dε0 is the length of ε0. To allow the entire shape of the frailty

distribution to vary smoothly with covariates, we instead consider logistic-normal con-

ditional probabilities that closely follow beta distributions yielding a particular class

of dependent tailfree processes (Jara and Hanson, 2011). Let X = [x̃1, . . . , x̃n]′ be the

n× (q + 1) design matrix, where each x̃i = (1,x′i)′. Given the cluster-level covariate

values x in cluster, a tailfree random distribution Gx is defined by replacing the above

independent beta random probabilities {Yε0}ε∈EJ−1 with the following logistic-normal

random variables

Yε0(x,βε0) = h
(
x̃′βε0

)
= exp(x̃′βε0)

1 + exp(x̃′βε0) , Yε1(x,βε0) = 1− h
(
x̃′βε0

)
= 1

1 + exp(x̃′βε0) ,

where βε0
ind∼ Nq+1 (0, 2n(X′X)−1/(cρ(dε0))), with ρ(dε0) = d2

ε0, following so called g-

priors (Zellner, 1983). The resulting process {Gx : x ∈ X} is referred to as a partially

specified linear dependent tailfree process with parameters (h,ΠJ,θ,AJ,c,ρ). It is easy

to see that E{Yε0(x,βε0)|x} = 0.5, so E(Gx) = Gθ, namely the random distribution

Gx is centered around Gθ for all x ∈ X .

For notational simplicity, set Yε0(i) = Yε0(xi,βε0) and ηε0(i) = x̃′iβε0. Define

ηε0 = (ηε0(1), . . . , ηε0(n))′. Based on the g-priors of βε0, we have ηε0|c ∼ Nn (0, gM)
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where g = 2/(cρ(dε0)), with ρ(dε0) = d2
ε0, and M = nX(X′X)−1X′. This speci-

fication implies the logit conditional probabilities are positively correlated for the

clusters with covariates that are close to each other. Let x̄ = ∑n
i=1 xi and (n− 1)S =∑n

i=1(xi − x̄)(xi − x̄)′. Christensen (2011) notes that the ith diagonal element of M

is given by mii = 1 + ndii/(n − 1), where dii = (xi − x̄)′S−1(xi − x̄) is the sample

squared Mahalanobis distance between xi and x̄. For cluster-level covariate values

xi1 , xi2 reasonably close to the sample mean x̄ (in terms of the Mahalanobis dis-

tance), a first order approximation gives that (Yε0(i1), Yε0(i2))′ approximately follows

N2(0, gX0(X′X)−1X0), where X0 = (xi1 , xi2)′. The larger c or dε0 are, the better

this approximation becomes. This leads to

corr{Yε0(i1), Yε0(i2)} ≈ 1 + di1,i2√
1 + di1,i1

√
1 + di2,i2

,

where di,j = (xi − x̄)′S−1(xj − x̄). Note that the locations xi1 and xi2 relative to

the mean covariate vector x̄ play a role in the correlation, and not just the Maha-

lanobis distance between them. When the covariate vector for a cluster i is fixed at

xi, Jara and Hanson (2011) show that assuming ηε0(i) ∼ N(0, 2mii/cd
2
ε0) approxi-

mates Yε0(i) ∼ Beta(cid2
ε0, cid

2
ε0), where ci = cm−1

ii . This approximation explains the

similarity between a marginal realization Gxi of the linear-dependent tailfree process

and a “traditional” Polya tree prior.

The precision parameter c ∈ R+ controls how closely the random distribution Gx

follows Gθ in terms of L1 distance (Hanson et al., 2008). Large values of c indicate

a strong belief that the frailties are closely iid from Gθ, since as c tends to ∞, the

random distribution Gx is Gθ with probability 1. Smaller values of c, on the other

hand, allow more pronounced deviations of G from Gθ. The choice c = 1 has been

advocated by many authors, e.g. recently Schörgendorfer et al. (2013). Alternatively,

we can also put a gamma prior on c, say, c ∼ Γ(ac, bc), as suggested in Jara and

Hanson (2011); if that is the case, the full conditional distribution for c is also a

gamma distribution. As for the choice of J , we typically consider J ≈ log2(n/n0),
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where n is the sample size and n0 (usually from 5 to 10) is a “typical” number of

observations falling into each set at level J (Hanson, 2006a). In addition, the linear

dependent tailfree process depends on the partition ΠJ,θ which is further determined

by the centering distribution Gθ. If one simply fixes θ at a specific value, the posterior

inferences may be affected unduly due to the partition dependence. In practice, one

common strategy to mitigate this problem is to specify a mixture of LDTFP by

allowing parameter θ of the centering distribution to be random, that is,

{Gx : x ∈ X} ∼ LDTFP(h,ΠJ,θ,AJ,c,ρ), θ ∼ P (dθ),

where P (dθ) represents a prior for θ; in this article, we consider θ−2 ∼ Γ(τ1, τ2), where

Γ refers to the gamma distribution with shape τ1 and rate τ2.

Given θ and β = {βε0 : ε ∈ EJ−1}, the conditional density of ei, given cluster-level

predictors xi, is given by

g(ei|θ,β) = 2Jφθ(ei)
J∏
j=1

Yεθ(ei,j)(xi,βεθ(ei,j−1)0), (A.1)

where φθ(·) is the density of a N(0, θ2) variate and εθ(ei, j) = ε1ε2 · · · εj is the set in

πjθ that ei is in. Therefore, the joint density of the frailty terms is given by

p(e1, . . . , en|θ,β) =
[
n∏
i=1

2Jφθ(ei)
]  ∏

ε∈EJ−1

n∏
i=1

exp(x̃′iβε0)I{ei∈Bθ(ε0)}

[1 + exp(x̃′iβε0)]I{ei∈Bθ(ε)}

 , (A.2)

where I{A} is the indicator function for A. This expression has the form of 2J − 1

logistic regression kernels, one for each ε0, times the likelihood for θ obtained from

fitting the standard parametric family N(0, θ2) to data e = (e1, . . . , en). This forms

the basis of an efficient MCMC scheme for obtaining posterior inference.

A.2 MCMC details

In this appendix, we describe an efficient MCMC algorithm for obtaining a poste-

rior sample {(γ(s), e(s), θ(s),β(s))}Ss=1. Based on this random sample, we can obtain
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any posterior target of inference of interest. For instance, the covariate effect ξ is

estimated by the posterior mean ξ̂ = S−1∑S
s=1 ξ

(s); the centering parameter θ2 is es-

timated by the θ̂2 = S−1∑S
s=1 θ

2(s); the predictive frailty density given some specific

cluster-level covariate x is estimated by ĝ(e|x) = S−1∑S
s=1 g(e|θ(s),β(s)) with g given

in (A.1); the predictive survival function given covariate vector w is estimated by

Ŝ(t|w) = S−1
S∑
s=1

K∑
k=1

exp

−
K(t)∑
k=1

λ
(s)
k ∆k(t) exp

{
w′ξ(s) + e

(s)
k

} , (A.3)

where {e(s)
k }Kk=1 is a random sample from the frailty density g(·|θ(s),β(s)).

Updating the frailties

Modifying Jara et al. (2009), the random effects ei can be updated as follows. For

i = 1, . . . , n, let Vi(γ, ei) = [θ−2 + 1′NiWi(γ, ei)1Ni ]−1, where 1Ni is an Ni × 1 vector

of 1s and Wi(γ, ei) = diag(µijk) is an Ni×Ni diagonal matrix. Then for the (s+1)th

scan of the posterior distribution, the candidate e∗i ∼ N(e(s)
i , Vi(γ, e(s)

i )) is accepted

with probability

α(e∗i |e
(s)
i ) = 1 ∧ Li(γ, e∗i )g(e∗i |θ,β)φ(e(s)

i |e∗i , Vi(γ, e∗i ))
Li(γ, e(s)

i )g(e(s)
i |θ,β)φ(e∗i |e

(s)
i , Vi(γ, e(s)

i ))
, (A.4)

where Li(γ, ei) = ∏ni
j=1

∏K(tij)
k=1 p(yijk|γ, ei) and φ(·|µ, σ2) represents the density func-

tion of a N(µ, σ2) random variable.

Updating fixed effects parameters

Set N = ∑n
i=1Ni, y = (y′1, . . . ,y′n)′, µ(γ, e) = E[y|γ, e]. Let Z = (z′ijk) be an

N × (K + p) design matrix and W(γ, e) = diag(µijk) be an N ×N diagonal matrix,

where all subscripts ijk are in lexicographical order. Assume a normal prior for the

fixed effects γ ∼ NK+p(γ0,S0). Let V (γ, e) = [S−1
0 + Z′W(γ, e)Z]−1 and

m(γ, e) = V(γ, e)[S−1
0 γ0 + Z′W(γ, e)Zγ + Z′(y− µ(γ, e))].
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Then for the (s+1)th scan of the posterior distribution, the candidate γ∗ is generated

from an NK+p(m(γ(s), e),V(γ(s), e)) distribution with acceptance proability

α(γ∗|γ(s)) = 1 ∧ L(γ∗, e)φK+p(γ∗|γ0,S0)φK+p(γ(s)|m(γ∗, e),V(γ∗, e))
L(γ(s), e)φK+p(γ(s)|γ0,S0)φK+p(γ∗|m(γ(s), e),V(γ(s), e)) , (A.5)

where L(γ, e) = ∏n
i=1 Li(γ, ei) and φk(·|µ,Σ) represents the density function of a

Nk(µ,Σ) random vector.

Updating the Tailfree process coefficients

A proposal based on one step of the Newton-Raphson algorithm (West, 1984; Gamer-

man, 1997) efficiently updates the parameters βε0. To maintain identifiability of the

model we set the first level conditional probability Y0(xi,β0) = 0.5, i.e. β0 = 0. It

follows that we need to update βε0 for all ε ∈ EJ−1\∅ yielding 2J − 2 in total. Define

“pseudodata"

ẽi(βε0) = x̃′iβε0 + I{ei ∈ Bθ(ε0)} − Yε0(xi,βε0)
Yε0(xi,βε0)[1− Yε0(xi,βε0)] ,

and weights

wii(βε0) = Yε0(xi,βε0)[1− Yε0(xi,βε0)]I{ei ∈ Bθ(ε)},

placed in the vector ẽ(βε0) = (ẽ1(βε0), . . . , ẽn(βε0))′ and matrix

W(βε0) = diag(w11(βε0), . . . , wnn(βε0))′.

Let Vε0 = 2n
cj2 (X′X)−1 for ε0 ∈ Ej, under the g-prior (7 in the paper) for βε0, the

M-H proposal is β∗ε0 ∼ Nq+1(m(β(s)
ε0 ),C(β(s)

ε0 )) where

m(βε0) = C(βε0)[X′W(βε0)ẽ(βε0)] and C(βε0) = [V−1
ε0 + X′W(βε0)X]−1. (A.6)

This proposal is accepted with probability α(β∗ε0|β
(s)
ε0 ) defined by

α(β∗ε0|β
(s)
ε0 ) = 1 ∧

φq+1(β∗ε0|0,Vε0)
φq+1(βε0|0,Vε0)

φq+1(β(s)
ε0 |m(β∗ε0),C(β∗ε0))

φq+1(β∗ε0|m(β(s)
ε0 ),C(β(s)

ε0 ))
q(β∗ε0|β

(s)
ε0 )

 (A.7)
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where

q(β∗ε0|β
(s)
ε0 ) =

∏
i:ei∈Bθ(ε)

exp
{
x̃′i(β∗ε0 − β

(s)
ε0 )
}I{ei∈Bθ(ε0)}[

1 + exp(x̃′iβ∗ε0)
]
/
[
1 + exp(x̃′iβ

(s)
ε0 )
] ,

and φq (·|µ,Σ) is the density of a q-variate normal distribution with mean and covari-

ance matrix µ and Σ, respectively. Note that the M-H proposal and full conditional

distribution for βε0 only depends on the observations {(xi, ei) : ei ∈ Bθ(ε)}. Com-

putational speed can be greatly increased by making use of this fact, especially at

higher tree levels.

Updating θ

The centering parameter θ can be updated via a random walk M–H step. The proposal

is log(θ∗) ∼ N(log(θ), v0) for some v0. This candidate θ∗ is accepted with probability

α(θ∗|θ(s)) = 1 ∧ p(e1, . . . , en|θ∗,β)π(θ∗)
p(e1, . . . , en|θ,β)π(θ) , (A.8)

where π(·) is the prior density of θ.

Summary of the MCMC scheme

Putting all of these updating steps together yields an efficient sampling algorithm

for approximating the joint posterior distribution p(e,γ,β, θ|D), where D = {Dij :

i = 1, . . . , n, j = 1, . . . , ni} with Dij being the ijth observed data point. Let

U(a, b) denote the uniform distribution with support [a, b]. Given the current values

(e(s),γ(s),β(s), θ(s)) from the sth scan of the Markov chain, we obtain new values as

follows:

1. Update e: for each i ∈ {i, . . . , n},

a) Generate a candidate e∗i from N(e(s)
i , Vi(γ(s), e

(s)
i )).

b) Compute the acceptance probability α(e∗i |e
(s)
i ) in (A.4) and sample u ∼

U(0, 1). If u < α(e∗i |e
(s)
i ) assign e(s+1)

i = e∗i , otherwise e
(s+1)
i = e

(s)
i .
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2. Update γ:

a) Generate a candidate γ∗ from NK+p(m(γ(s), e(s+1)),V(γ(s), e(s+1))).

b) Compute the acceptance probability α(γ∗|γ(s)) in (A.5) and sample u ∼

U(0, 1). If u < α(γ∗|γ(s)) assign γ(s+1) = γ∗, otherwise γ(s+1) = γ(s).

3. Update β: for each ε ∈ EJ−1\∅,

a) Generate a candidate β∗ε0 from Nq+1(m(β(s)
ε0 ),C(β(s)

ε0 )).

b) Compute the acceptance probability α(β∗ε0|β
(s)
ε0 ) in (A.7) and sample u ∼

U(0, 1). If u < α(β∗ε0|β
(s)
ε0 ) assign β(s+1)

ε0 = β∗ε0, otherwise β
(s+1)
ε0 = β

(s)
ε0 .

Note that m(β(s)
ε0 ), C(β(s)

ε0 ) and α(β∗ε0|β
(s)
ε0 ) also depend on the updated

e(s+1) in step 1.

4. Update θ:

a) Generate a candidate log(θ∗) from N(log(θ), v0) for some v0.

b) Compute the acceptance probability α(θ∗|θ(s)) in (A.8) and sample u ∼

U(0, 1). If u < α(θ∗|θ(s)) assign θ(s+1) = θ∗, otherwise θ(s+1) = θ(s).

The Markov chain achieves approximate stationarity after a large enough burn-in

period of iterations; see Tierney (1994) and Roberts and Smith (1994) for some general

convergence conditions. After the convergence is established, a random sample, say

{(e(s),γ(s),β(s), θ(s))}Ss=1, from the posterior distribution can be obtained by saving

only every kth scan to reduce chain correlations.

A.3 Sample R code to analyze the Iowa SEER data

Subsets of the SEER database are obtained from

https://seer.cancer.gov/seertrack/data/request/.
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######################################################################

# Breast cancer patients;

# t -- Follow-up time in Months

# delta -- Status: 1 = death; 0 = alive(censored)

# ClusterID -- County: State County code (1-99)

# -------- Individual-level Covariates ----------------------------------

# w1 -- Age: age of the patient at diagnosis in complete years

# w2 -- Stage: 1 = Regional; 0 = Distant or Local

# w3 -- Stage: 1 = Distant; 0 = Regional or Local

# -------- County-level Covariates -------------------------------------

# xtf.Income-- Median Household Income / 1000 in 1993

# xtf.Poverty-- Percentage of families in poverty in 1990

# xtf.Edu -- Percent of Bachelor’s degree or higher in 1990

# xtf.RUCC -- Rural-Urban Continuum Codes in 1993

########################################################################

library(survival)

library(DPpackage)

library(coxme)

library(MASS)

#########################################################

# read the data and create variables

#########################################################

# Individual Level:

data = read.table("SEER_BreastCancer_IA.txt", header = TRUE)

d = data[order(data$County),];

ni = as.vector(table(d$County))

n = length(ni)

N = sum(ni)

ClusterID = rep(1:n, ni)

t = d$t

delta = d$Status

w1 = d$Age;

w2 = d$Regional

w3 = d$Distance

# County Level:

d2 = read.table("CountyCovariates.txt", head=T)

xtf.Income = d2$Income_93/1000
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xtf.Poverty = d2$Poverty_Family_90*100

xtf.Edu = d2$Education_90*100

xtf.RUCC = d2$RUCC_93

# Choose the county-level covariate that need to be included

Xindex = c(4) # Index for choosing RUCC only

Xtf = as.matrix( cbind(xtf.Income, xtf.Poverty, xtf.Edu, xtf.RUCC)[,Xindex])

xtf = cbind(rep(1,n), Xtf)

X = apply(Xtf, 2, function(x) rep(x, ni))

Xnames = c("Income", "Poverty", "Education", "RUCC")[Xindex]

Windex = c(1:3) # Index for choosing individual-level covariates

Ws = cbind(w1, w2, w3)[,Windex]

W = cbind(ClusterID, Ws, X)

Wnames = c("Age", "Regional", "Distance")[Windex]

pw = length(Wnames); px=length(Xnames); p=pw+px+1; q=px+1;

WX = W[,-1]

colnames(W) = c("ClusterID", Wnames, Xnames)

#########################################################

# Fit coxme

#########################################################

fitcoxme = coxme(Surv(t,delta)~W[,-1] + (1|ClusterID))

fitcoxme

#########################################################

# Fit LDTFP

#########################################################

# Breslow estimate of the baseline hazard based coxme

lambdacoxme=function(time)

{

pred.e=as.vector(fitcoxme$frail$ClusterID)

n.pred.e=length(pred.e)

dummy <- rep(0,n.pred.e)

msurvival=rep(0,length(time))

fitcoxme.coeff=as.vector(fitcoxme$coefficients)

tf = t[delta == 1];

nf = length(tf);
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rt = matrix(t,N,nf);

rtf = matrix(tf,N,nf,byrow=TRUE);

logic= (rt >= rtf);

N.pred.e=rep(pred.e,ni)

Sn0 = as.vector( exp(as.vector(WX%*%fitcoxme.coeff) + N.pred.e)%*%logic )+1e-10

Lambda=rep(0,length(time))

ntime = length(time)

for (i in 1:length(time)){

Lambda[i]=sum( 1/Sn0*(tf<=time[i]) )

}

lambda = (Lambda[2:ntime]-Lambda[-ntime])/(time[2:ntime]-time[-ntime])

lambda

}

# Plot the Breslow estimate for hazard values at each month

time0 = seq(0,47, 1)

lambda0 = lambdacoxme(time0)

sfun0 = stepfun(time0[-1], c(lambda0,0), right=T);

plot(sfun0)

# Determine the cut-points by examing the above plot

cutpoint = c(1, 11, 16, 17, 19, 20, 25, 28, 29, 36, 40, 44, 47);

intervals=length(cutpoint)

# Estimated hazards based on the above cut-point,

# which will be used as the starting values of log(lambda) for LDTFP

hazards0 = rep(0, intervals)

hazards0[1] = mean( lambda0[1:(cutpoint[1])] )

# if intervals>=2

for (i in 2:intervals){

hazards0[i] = mean( lambda0[(cutpoint[i-1]+1): (cutpoint[i])] )

}

sfun1=stepfun(cutpoint, c(hazards0,0), right=T);

lines(sfun1, lwd=2, col=2)

# Function to make a row with ’1’ at ind----

onv = function(ind,len){onv=rep(0,len); onv[ind]=1; onv}

# Creat new data structure ---------

y={}; Zmat={}; tot=0; off={}; nW=ncol(W)
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for(i in 1:N)

{

tot=tot+1

Zmat=matrix(append(Zmat,c(W[i,1:nW],onv(1,intervals))),c(nW+intervals,tot))

off=append(off,min(cutpoint[1],t[i]))

if(t[i]<=cutpoint[1] && delta[i]==1)

{

y=append(y,1)

} else

{

y=append(y,0)

}

if (intervals>1)

{

for(j in 1:(intervals-1))

{

if(t[i]>cutpoint[j])

{

off=append(off,min(cutpoint[j+1],t[i])-cutpoint[j])

tot=tot+1

Zmat=matrix(append(Zmat,c(W[i,1:nW],onv(j+1,intervals))),c(nW+intervals,tot))

if(t[i] <= cutpoint[j+1] && delta[i]==1)

{

y=append(y,1)

} else

{

y=append(y,0)

}

}

}

}

}

Zmat = t(Zmat);

id = Zmat[,1];

loghazard = Zmat[,-(1:nW)];

Z = Zmat[,-1] # design matrix for fixed effects

if ((p-1)==pw) {

colnames(Z)=c( Wnames, paste("loghazard",1:intervals, sep="") )

} else {
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colnames(Z)=c( Wnames, Xnames, paste("loghazard",1:intervals, sep="") )

}

#########################################################

# Fit LDTFP: prior specifications and initial state

#########################################################

# Design matrix for prediction of frailties

xtfpred1=xtf[77,-1]; xtfpred2=xtf[80,-1]

wxpred1=c( c(68.8, 0, 1),xtfpred1); wxpred2=c(c(68.8, 0, 1),xtfpred2)

xpred=rbind( c(rep(0,pw), rep(0,p-1-pw), rep(0,(intervals))) ,

c(rep(0,pw), rep(0,p-1-pw), rep(0,(intervals))))

xtfpred=rbind(c(1,xtfpred1),c(1,xtfpred2))

prediction=list(xpred=xpred,xtfpred=xtfpred,quans=c(0.025,0.50,0.975))

# Initial based on coxme

loghazards0= log(hazards0)

gammacox = c(as.vector(fitcoxme$coefficients), loghazards0)

sigma2bcox = as.vector(fitcoxme$vcoef[[1]])

frailcox = as.vector(fitcoxme$frail$ClusterID)

# Prior information:

maxJ = 4 #

prior=list(maxm=maxJ,alpha=1,mub=rep(0,(p-1+intervals)),a0=1,b0=1,

Sb=diag(rep(10000,(p-1+intervals))),taub1=4,taub2=2*sigma2bcox)

# Initial state

betatf = matrix(0,nrow=(2**maxJ-1),ncol=q)

gamma0 = gammacox

sigma2b0 = sigma2bcox

frail = frailcox

state = list(alpha=1,beta=gamma0,b=frail,sigma2b=sigma2b0,betatf=betatf)

# MCMC parameters

nskip=30

mcmc=list(nburn=1000,nsave=500,nskip=nskip,ndisplay=500)

# Fitting the model

mingrid=-1.5; maxgrid=1.5; ngrid=200;

xgrid = seq(mingrid, maxgrid, length.out=ngrid);
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fitLDTF=LDTFPglmm(y=y,x=Z,roffset=log(off),g=id,family=poisson(log),

xtf=xtf,prior=prior,prediction=prediction,

grid=seq(mingrid,maxgrid,len=ngrid),

mcmc=mcmc,state=state,status=FALSE)

# Results

sLDTF=summary(fitLDTF)

sLDTF

#-----------functions to plot the densities for frailties -------------

## convert a binary vector to decimal

bintodeci = function (x) {

nx=length(x); index=nx:1

deci=sum(x*2^(index-1))

deci

}

## generate one frailty from G_xtf

gentf = function (xtf, beta, theta2) {

nxtf = length(xtf)

nbeta = length(beta)/nxtf

J = log(nbeta+2)/log(2)

e = rep(0,J)

e[1] = rbinom(1,1,0.5)

for (j in 2:J){

pos = 2^(j-1)-2 + bintodeci(e[1:j])/2 +1

betaj= beta[(nxtf*pos-nxtf+1):(nxtf*pos)]

xbeta= (xtf%*%betaj)[1,1]

probj= exp(xbeta) / (1+exp(xbeta))

e[j] = rbinom(1,1,1-probj)

}

m=bintodeci(e)

ulow= m/2^J; uup=(m+1)/2^J

u=runif(1,ulow, uup)

qnorm(u,0, sqrt(theta2))

}

## frailty density evaluated at e

denfrail = function (e, xtf, beta, theta2) {

nxtf = length(xtf)

nbeta = length(beta)/nxtf

J = log(nbeta+2)/log(2)
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tmp = e/sqrt(theta2)

loglik= dnorm(e, 0, sqrt(theta2), log=T)

if (tmp > 4.0) tmp2 = 0.9999683

else if (tmp < -4.0) tmp2 = 3.167124e-05

else tmp2 = pnorm(e, 0, sqrt(theta2))

for (j in 2:J) {

indx = floor( 2^j*tmp2+1 )

for (k in 1:2^(j-1)){

if(indx==(2*k-1) | indx==2*k) {

pos = 2^(j-1)-2 + k

betaj = beta[(nxtf*pos-nxtf+1):(nxtf*pos)]

xbeta = (xtf%*%betaj)[1,1]

Y0 = exp(xbeta)/( 1+exp(xbeta) )

if (indx==(2*k-1)) loglik = loglik + log(Y0)

else loglik = loglik - log( 1+exp(xbeta) )

}

}

}

loglik = loglik + (J-1)*log(2)

exp(loglik)

}

## posterior mean of frailty density

densm = function(xgrid, xtf) {

nwx = pw + px

ngrid = length(xgrid)

betatf = fitLDTF$save.state$tfpsave

theta2 = fitLDTF$save.state$thetasave[,(nwx+intervals+1)]

nsave = length(theta2)

dummy = rep(0, nsave)

denm = rep(0, ngrid)

denu = denm; denl = denm;

for (i in 1:ngrid){

for (j in 1:nsave){

dummy[j] = denfrail(xgrid[i], c(1,xtf), betatf[j,], theta2[j])

}

denm[i] = mean (dummy)

}

denm

}
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## posterior mean of frailty density shifted by the main effect

densmshift = function(xgrid, xtf) {

nwx = pw + px

ngrid = length(xgrid)

betatf = fitLDTF$save.state$tfpsave

theta2 = fitLDTF$save.state$thetasave[,(nwx+intervals+1)]

gammax = as.matrix( fitLDTF$save.state$thetasave[,(pw+1):(nwx)] )

nsave = length(theta2)

dummy = rep(0, nsave)

denm = rep(0, ngrid)

denu = denm; denl = denm;

for (i in 1:ngrid){

for (j in 1:nsave){

evalue = xgrid[i] - (gammax[j,]%*%xtf)[1,1]

dummy[j] = denfrail(evalue, c(1,xtf), betatf[j,], theta2[j])

}

denm[i] = mean (dummy)

}

denm

}

#----------------- functinos to plot survival curves for LDTFP ---------

ScLDTF = function(t,wx,gamma.h,frailty,intervals)

{

p = length(wx)

k = 1

temp = exp(gamma.h[p+1])*min(cutpoint[1],t)

while (t>cutpoint[k] && k<intervals)

{

temp = temp+exp(gamma.h[p+k+1])*(min(cutpoint[k+1],t)-cutpoint[k])

k=k+1

}

exp(-temp*exp((wx%*%gamma.h[1:p])[1,1] + frailty))

}

## Function to plot survival curve

surLDTF = function (t, wx)

{

nwx = length(wx)
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xtf = c( 1, wx[-(1:pw)] )

betatf = fitLDTF$save.state$tfpsave

theta2 = fitLDTF$save.state$thetasave[,(nwx+intervals+1)]

gamma.h= fitLDTF$save.state$thetasave[,1:(nwx+intervals)]

nsave = nrow(gamma.h)

nt = length(t)

dummy = matrix(0, nsave, nt)

n.pred.e=500;

for (j in 1:nsave)

{

tmp = matrix(0, n.pred.e, nt);

for (i in 1:n.pred.e) {

pred.e=gentf (xtf, betatf[j,], theta2[j]);

tmp[i,] = as.vector( sapply(t, ScLDTF, wx, gamma.h[j,], pred.e, intervals))

}

remove(tmp);

dummy[j,] = colMeans(tmp);

}

colMeans(dummy)

}

#-------------------------- LPML and DIC ----------------------------

# density function evaluated at each data point

densfun = function(t,delta,wx,gamma.h,frailty,intervals){

p = length(wx)

k = 1

temp = exp(gamma.h[p+1])*min(cutpoint[1],t)

while (t>cutpoint[k] && k<intervals)

{

temp = temp+exp(gamma.h[p+k+1])*(min(cutpoint[k+1],t)-cutpoint[k])

k=k+1

}

lambda.K= gamma.h[p+k]

temp2 = (wx%*%gamma.h[1:p])[1,1] + frailty

exp((lambda.K+temp2)*delta-temp*exp(temp2))

}

## calculate LPML and DIC

nwx = pw + px

frails= fitLDTF$save.state$randsave
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betatf= fitLDTF$save.state$tfpsave

theta2 = fitLDTF$save.state$thetasave[,(nwx+intervals+1)]

gamma.h = fitLDTF$save.state$thetasave[,1:(nwx+intervals)]

nsave = nrow(gamma.h)

cpo1 = rep(0, N)

cpo2 = rep(0, N)

dummy = rep(0, nsave)

for (i in 1:N){

Ni = rep(1:n, ni)

for (j in 1:nsave){

pred.e = frails[j,Ni[i]]

dummy[j] = densfun(t[i],delta[i],W[i,-1],gamma.h[j,],pred.e,intervals)

}

cpo1[i] = 1/mean(1/dummy)

cpo2[i] = mean(log(dummy))

}

LPML.LDTF = sum(log(cpo1))

LPML.LDTF

Dbar = -2*sum(cpo2)

tmp = rep(0, N)

mean.pred.e = colMeans(frails)

mean.gamma.h = as.vector(colMeans(gamma.h))

for (i in 1:N){

Ni = rep(1:n, ni)

pred.e = mean.pred.e[Ni[i]]

tmp[i] = densfun(t[i],delta[i],W[i,-1],mean.gamma.h,pred.e,intervals)

}

pD = Dbar + 2*sum(log(tmp))

DIC.LDTF = Dbar+pD

DIC.LDTF

#########################################################

# Plots: frailty densities at xtfpred1, xtfpred0 and xtfpred2

# survival curves at wxpred1, wxpred0, wxpred2

#########################################################

# Take xtfpred0 as the mean of county-level covariate values

xtf.quan = apply(Xtf, 2, function(x) quantile(x, c(0.05, 0.95)))

xtfpred0 = apply(Xtf, 2, mean);
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if (Xtf[1,px]==8) {xtfpred0[px]=5; xtf.quan[,px]=c(2,9)}

# plot frailty densities and shifted version

xgrid2 = seq(-2.5, 2.5, length=300) + ( xtfpred0%*%fitLDTF$coeff[(pw+1):(pw+px)] )[1,1]

ngrid2 = length(xgrid2)

densm0 = densm(xgrid, xtfpred0)

densmshift0 = densmshift(xgrid2, xtfpred0)

densm1 = matrix(0,px,ngrid)

densm2 = densm1

densmshift1 = matrix(0,px,ngrid2)

densmshift2 = densmshift1

for (i in 1:px){

pindx = i

xtfpred1 = xtfpred0; xtfpred1[pindx] = xtf.quan[1,pindx]

xtfpred2 = xtfpred0; xtfpred2[pindx] = xtf.quan[2,pindx]

densm1[i,] = densm(xgrid, xtfpred1)

densm2[i,] = densm(xgrid, xtfpred2)

densmshift1[i,] = densmshift(xgrid2, xtfpred1)

densmshift2[i,] = densmshift(xgrid2, xtfpred2)

}

time = seq(0, max(t), length.out=200); ntime=length(time)

wpred0 = c(mean(d$Age),0,1)

wxpred0 = c(wpred0,xtfpred0)

mLDTF0 =surLDTF(time, wxpred0)

survm1 = matrix(0,px,ntime)

survm2 = survm1

for (i in 1:px){

pindx = i

xtfpred1 = xtfpred0; xtfpred1[pindx] = xtf.quan[1,pindx]

xtfpred2 = xtfpred0; xtfpred2[pindx] = xtf.quan[2,pindx]

wxpred1 = c(wpred0,xtfpred1)

wxpred2 = c(wpred0,xtfpred2)

survm1[i,] = surLDTF(time, wxpred1)

survm2[i,] = surLDTF(time, wxpred2)

}

#save.image("RUCC.RData")
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par(mfrow=c(3,px))

par(mar = c(3, 3, 2, 1)+0.2)

par(mgp = c(2.2, 1, 0))

# frailty density

for (i in 1:px) {

plot(xgrid, densm0, "l", lty="solid", xlab="values", ylab="density",

ylim=c(0,1.9), lwd=2, main=paste("Model 1:", Xnames[i], sep=" " ))

lines(xgrid, densm1[i,], "l", lty="dashed", lwd=2, col=2)

lines(xgrid, densm2[i,], "l", lty="dotted", lwd=2, col=4)

legend(0.52, 1.9, c(paste(Xnames[i], "2", sep="="), paste(Xnames[i], "5", sep="="),

paste(Xnames[i], "9", sep="=")), col = c(2,1,4),

lty = c("dashed", "solid", "dotted"), cex=1)

}

# shifted frailty density

for (i in 1:px) {

plot(xgrid2, densmshift0, "l", lty="solid", xlab="values", ylab="density",

ylim=c(0,1.9), lwd=2, main=paste("Model 1:", Xnames[i], sep=" " ))

lines(xgrid2, densmshift1[i,], "l", lty="dashed", lwd=2, col=2)

lines(xgrid2, densmshift2[i,], "l", lty="dotted", lwd=2, col=4)

legend(0.4, 1.9, c(paste(Xnames[i], "2", sep="="), paste(Xnames[i], "5", sep="="),

paste(Xnames[i], "9", sep="=")), col = c(2,1,4),

lty = c("dashed", "solid", "dotted"), cex=1)

}

# survival curve

for (i in 1:px) {

plot(time, mLDTF0, "l", lty="solid", xlab="values", ylab="survival",

ylim=c(0,1), lwd=2, main=paste("Model 1:", Xnames[i], sep=" " ))

lines(time, survm1[i,], "l", lty="dashed", lwd=2, col=2)

lines(time, survm2[i,], "l", lty="dotted", lwd=2, col=4)

legend(31.5, 0.99, c(paste(Xnames[i], "2", sep="="), paste(Xnames[i], "5", sep="="),

paste(Xnames[i], "9", sep="=")), col = c(2,1,4),

lty = c("dashed", "solid", "dotted"), cex=1)

}

# Add the fitted baseline hazards plot based on LDTFP

# to the previous plot based on coxme

plot(sfun0, xlim=c(0,50))

lambda2 = as.vector(exp( fitLDTF$coefficients[p:(p+intervals-1)] ));
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sfun2=stepfun(cutpoint, c(lambda2,0), right=T); lines(sfun2, lwd=2, col=4)

A.4 Additional simulation results

Effect of level J for larger sample size under Scenario I

To assess the effect of the level of the LDTFP on the posterior inferences, simulat-

ed 15 dat sets from the model with n = 1, 000, under Scenario I. For each data

set, we fitted different versions of the proposed model by considering J = 4, 5, 6, 7.

Figures A.1-A.4 present the fitted frailty densities and survival curves averaged over

replicates. For J = 4 (Figure A.1), we do see increased accuracy of estimated frailty

and survival curves from increasing the number of clusters to n = 1000. Increasing

from J = 4 to J = 5 does lead to a slight improvement on the estimated shape of

the frailty density. Further increasing J to 6 or 7 does not help much, but roughly

doubles the computing time for each additional level.

Comparison with the MPT frailty Cox model under Scenario

I

Under Scenario I, we also fitted the exchangeable mixture of Polya trees (MPT)

(Hanson, 2006a) frailty Cox’s model using the function PTglmm available in DPpackage

(Jara et al., 2011). The results for regression coefficients under the proposed model

and the MPT approach are given in Table A.2. The average of the estimated frailty

distributions and survival functions across simulation data sets for some specific co-

variate values are presented in Figure A.5, and the corresponding Monte Carlo mean

and standard deviations for the ISE are given in Table A.3. The MPT approach

outperforms the GF and PSF methods when the cluster-level covariate x = 2, but

performs worse when x = −2. This is not surprising, since the MPT gives us a non-
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Figure A.1 Simulated data – Scenario III: Mean over simulations of the estimated
curves under the proposed model with J = 4 and sample size n = 1000. Panels (a)
and (b) show the results for the survival functions. Panels (c) and (d) show the
results for the frailty densities. Panels (a) and (c) show the results for covariate
values (2, 1,−2). Panels (b) and (d) show the results for covariate values (0, 1, 2).
The true curves are represented by continuous lines. The results under the proposed
model are represented by dashed lines. The results under the exchangeable
Gaussian frailty model are represented by dotted lines. In Panels (a) and (b) the
results obtained under of PSF approach are represented by a dot-dashed line.

parametric frailty distribution estimate which is a balance between one-mode density

and two-mode density. Thus the performance of MPT estimates will depends on the

value of cluster-level covariates.
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Figure A.2 Simulated data – Scenario III: Mean over simulations of the estimated
curves under the proposed model with J = 5 and sample size n = 1000. Panels (a)
and (b) show the results for the survival functions. Panels (c) and (d) show the
results for the frailty densities. Panels (a) and (c) show the results for covariate
values (2, 1,−2). Panels (b) and (d) show the results for covariate values (0, 1, 2).
The true curves are represented by continuous lines. The results under the proposed
model are represented by dashed lines. The results under the exchangeable
Gaussian frailty model are represented by dotted lines. In Panels (a) and (b) the
results obtained under of PSF approach are represented by a dot-dashed line.

Comparison with the GF approach under additional

Scenario III

We also considered a third scenario favorable to the GF model to evaluate the be-

haviour of the proposed approach when a standard parametric exchangeable (covariate-

free) frailty model is correct. Clustered failure time data were simulated in the same
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Figure A.3 Simulated data – Scenario III: Mean over simulations of the estimated
curves under the proposed model with J = 6 and sample size n = 1000. Panels (a)
and (b) show the results for the survival functions. Panels (c) and (d) show the
results for the frailty densities. Panels (a) and (c) show the results for covariate
values (2, 1,−2). Panels (b) and (d) show the results for covariate values (0, 1, 2).
The true curves are represented by continuous lines. The results under the proposed
model are represented by dashed lines. The results under the exchangeable
Gaussian frailty model are represented by dotted lines. In Panels (a) and (b) the
results obtained under of PSF approach are represented by a dot-dashed line.

way as Scenario I, but with frailties generated from standard normal distribution. The

results for the regression coefficients under the proposed model and the GF approach

are given in Table A.4. We can see that both approaches yielded unbiased estimates

of ξ and θ2, and almost the same values for MEAN-SD. However, the estimated

standard error for ξx is severely underestimated by the GF approach, with CP of
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Figure A.4 Simulated data – Scenario III: Mean over simulations of the estimated
curves under the proposed model with J = 7 and sample size n = 1000. Panels (a)
and (b) show the results for the survival functions. Panels (c) and (d) show the
results for the frailty densities. Panels (a) and (c) show the results for covariate
values (2, 1,−2). Panels (b) and (d) show the results for covariate values (0, 1, 2).
The true curves are represented by continuous lines. The results under the proposed
model are represented by dashed lines. The results under the exchangeable
Gaussian frailty model are represented by dotted lines. In Panels (a) and (b) the
results obtained under of PSF approach are represented by a dot-dashed line.

86%. The average of the estimated frailty distributions and survival functions across

simulated data sets for some specific covariate values are presented Figure A.4. The

results suggest that essentially no differences among the three methods are observed;

all estimated functions are close to the truth, indicating that there is little price to

be paid for the extra generality when using the proposed model when normality and
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Figure A.5 Simulated data – Scenario I: Mean, across simulations, of the posterior
mean of the survival and frailty density functions under the proposed model. Panels
(a) and (b) show the results for the survival functions. Panels (c) and (d) show the
results for the frailty densities. Panels (a) and (c) show the results for covariate
values (2, 1,−2). Panels (b) and (d) show the results for covariate values (0, 1, 2).
The true curves are represented by continuous lines. The results under the proposed
model are represented by dashed lines. The results under the MPT frailty model are
represented by dotted lines.
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Table A.2 Simulation data – Scenario I: True value, bias of the point estimator,
mean (across Monte Carlo simulations) of the posterior standard
deviations/standard errors (MEAN-SD), standard deviation (across Monte Carlo
simulations) of the point estimator (SD-MEAN) and Monte Carlo coverage
probability for the 95% credible interval/confidence interval (CP) for the regression
parameters. The results are presented under the proposed model and under the
MPT approach.

Proposed Model MPT Model
Parameters True BIAS MEAN-SD SD-MEAN CP BIAS MEAN-SD SD-MEAN CP

ξ1 1.0 0.011 0.052 0.054 0.930 0.009 0.046 0.041 0.985
ξ2 0.5 0.008 0.088 0.090 0.945 0.005 0.087 0.087 0.945
ξx 1.0 -0.009 0.141 0.126 0.965 0.081 0.133 0.176 0.770

Table A.3 Simulated data – Scenario I: Monte Carlo mean (Monte Carlo standard
deviation) for the ISE of the survival function for two different predictor values.
The results for the different approaches under both simulation scenarios are
presented. The numbers correspond to 103 times the original values.

(w1, w2, x) Proposal GF approach PSF approach MPT approach
(2, 1,−2) 2.02 (2.48) 4.37 (3.46) 6.28 (3.49) 7.71 (6.03)
(0, 1, 2) 1.94 (2.53) 10.5 (6.86) 14.3 (10.9) 8.19 (5.55)

exchangeability are valid assumptions.

Table A.4 Simulation data – Scenario III: True value, bias of the point estimator,
mean (across Monte Carlo simulations) of the posterior standard
deviations/standard errors (MEAN-SD), standard deviation (across Monte Carlo
simulations) of the point estimator (SD-MEAN) and Monte Carlo coverage
probability for the 95% credible interval/confidence interval (CP) for the regression
parameters. The results are presented under the proposed model and under the GF
approach.

Proposed Model GF Model
Parameters True BIAS MEAN-SD SD-MEAN CP BIAS MEAN-SD SD-MEAN CP

ξ1 1.0 -0.002 0.044 0.045 0.940 -0.005 0.050 0.054 0.920
ξ2 0.5 0.002 0.084 0.088 0.940 0.001 0.085 0.091 0.935
ξx 1.0 0.002 0.087 0.068 0.975 -0.018 0.055 0.070 0.860
θ2 1.0 0.042 0.209 -0.036 0.185

In addition, the results of the comparison of the estimated survival curves are

presented in Table A.5, where the Monte Carlo mean and standard deviations for

the ISE for two different predictor values are given. Even when an exchangeable

frailty model with normal distribution applies, the proposed model is slightly more

beneficial in estimating the survival functions. This may partly come from the differ-
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Figure A.6 Simulated data – Scenario III: Mean, across simulations, of the
posterior mean of the survival and frailty density functions under the proposed
model. Panels (a) and (b) show the results for the survival functions. Panels (c) and
(d) show the results for the frailty densities. Panels (a) and (c) show the results for
covariate values (2, 1,−2). Panels (b) and (d) show the results for covariate values
(0, 1, 2). The true curves are represented by continuous lines. The results under the
proposed model are represented by dashed lines. The results under the exchangeable
Gaussian frailty model are represented by dotted lines. In Panels (a) and (b) the
results obtained under of PSF approach are represented by a dot-dashed line.
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ence between the Bayesian and frequentist methods for computation. The Bayesian

approach averages over the posterior whereas the frequentist approach uses “plug-in”

estimates which can underestimate variability.

Table A.5 Simulated data – Scenario III: Monte Carlo mean (Monte Carlo
standard deviation) for the ISE of the survival function for two different predictor
values. The results for the different approaches are presented. The numbers
correspond to 103 times the original values.

(w1, w2) Proposal GF approach PSF approach
(2, 1) 1.66 (2.66) 2.02 (2.89) 2.38 (3.46)
(0, 1) 1.53 (1.88) 1.70 (1.96) 2.16 (2.46)

A.5 Additional analysis of SEER data

Additional cut-point vector specifications

We consider additional cut-point vector specifications as follows:

Case IV: a = (2, 4, 7, 11, 15, 18, 22, 26, 32, 47), which is determined by the quan-

tiles of the distribution of event times based on Kaplan-Meier curve so that each

interval contains almost equal number of events.

Case IVb: a = (1, 3, 5, 8, 11, 13, 16, 18, 22, 25, 29, 34, 47), which is determined

in the same way as Case IV but with size 13.

Case IIb: a = (2, 5, 9, 12, 15, 17, 21, 25, 28.2, 32.6, 37, 42.5, 47), where ak is the
k
13th quantile of the empirical distribution of observed survival times.

Table A.6 shows the DIC and LPML for the three models considered in the main

article. We can see that Case IV gives a little better fit than the Case II, but still

much worse than the Case I. It suggests that the Kaplan-Meier based specification

of the cut-points provides slightly better fit than the empirical distribution based

specification. When we increase the size of cut-point vector from 10 to 13 for Case
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II and Case IV, the model fit only improves 1 unit for LPML and 4 units for DIC

across the three models, compared with the Case II with 10 cut-points. It indicates

that carefully choosing the cut-points is more important than simply increasing the

number of cut-points.

Table A.6 Iowa SEER data: Deviance information criteria (DIC) and log of the
pseudo marginal likelihood (LPML) for models under consideration.

Case IV Case IVb Case IIb
Model DIC LPML DIC LPML DIC LPML

1 4457 -2232 4456 -2232 4459 -2233
2 4459 -2233 4460 -2234 4461 -2234
3 4458 -2232 4459 -2234 4459 -2234

Figure A.7 presents the fitted predictive frailty densities for both ei (median-zero)

and ei + x′iξx and survival curves for women with mean entry age 68.8 years and dis-

tant stage of disease who live in the counties with different levels of median household

income or RUCC, under Model 1 and Model 2 for Case IV. We can see that all

the estimated curves are very similar to those obtained under Case I considered in

the main article.

Additional comparison between ours and marginal PH model

We additionally presented the fixed effects under the marginal non-frailty PH model

(i.e. using the R function coxph with the option cluster) across Model 1–Model

3 in Table A.7. Note that the marginal PH model is equivalent to the PSF model

from the marginal model perspective, so these fixed effects are exactly the same as

those obtained under the PSF model. Note that the coefficient estimates under the

marginal PH model have population-averaged interpretations, and cannot be directly

compared with those fitted from the proposed frailty PH model due to different model

structures.
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Figure A.7 Iowa SEER data: Fitted predictive frailty densities (Panels (a) and
(b)), frailty densities with location shifts (Panels (c) and (d)) and survival curves
(Panels (e) and (f)) for women with mean entry age 68.8 years and distant stage of
disease who live in the counties with different county covariate levels under Model 1
(Panels (a), (c) and (e)) and Model 2 (Panels (b), (d) and (f)) under Case IV. In
Panels (a), (c) and (e), the results for RUCC=2, 5 and 9 are displayed as dashed,
continuous and dotted lines, respectively. In Panels (b), (d) and (f), the results for
Income=23.354, 29.176 and 35.301 are displayed as dashed, continuous and dotted
lines, respectively. 166
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Table A.7 Iowa SEER data: Point estimates (95% confidence intervals) of fixed
effects ξ from various models under the marginal PH model.

Predictor Model 1 Model 2 Model 3 Model 0
ξ1 (Age) 0.02 0.021 0.021 0.019

(0.014, 0.026) (0.015, 0.027) (0.015, 0.027) (0.013, 0.025)
ξ2 (Regional) 0.30 0.30 0.30 0.30

(0.08, 0.51) (0.09, 0.52) (0.08, 0.52) (0.09, 0.50)
ξ3 (Distant) 1.63 1.68 1.64 1.64

(1.35, 1.92) (1.39, 1.97) (1.36, 1.93) (1.34, 1.95)
ξx1 (RUCC) -0.106 -0.087

(-0.154, -0.058) (-0.152, -0.022)
ξx2 (Income) 0.049 0.014

( 0.019, 0.079) (-0.025, 0.054)

Although the fixed effects are not appropriate to be compared between the pro-

posed model and the marginal PH model, we carefully compared the fitted survival

curves acrossModel 1–Model 3 for different covariates levels in Figure A.8 and A.9.

Overall, the marginal PH model under-predicts survival time up to about 1 month

compared with our proposed model for patients with mean entry age 68.8 years and

distant stage of disease who live in the same county. It may be partly due to the fact

that the marginal PH model and the PSF model fail to detect the bi-modal behavior

of the frailty distribution for rural counties.

Measures of dependence within cluster
Kendall’s tau is widely used to measure the overall dependence of a pair of subjects

over the entire lifespan by integrating over time, which is based on a form of depen-

dence known as concordance (Nelsen, 2006). As suggested by one of the referees, we

calculated the Kendall’s tau for different level of county-specific covariates under the

proposed model. Suppose a posterior sample {(γ(s), e(s), θ(s),β(s))}Ss=1 has been ob-

tained. For the sth iteration, we first draw a random sample, say {e(s)
k }Kk=1, from the

posterior frailty density gx(·|θ(s),β(s)), then draw a pair of survival times (t(s)1,k, t
(s)
2,k) in-

dependently from the predictive survival function Sw(t|γ(s), e
(s)
k ), where w = (w̃′,x′)′
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Figure A.8 Iowa SEER data: Fitted predictive survival curves (thicker lines) with
95% confidence/credible intervals (thinner lines) for women with mean entry age
68.8 years and distant stage of disease who live in the counties with different county
covariate levels under the proposed model (solid lines) and under the marginal PH
model (dashed lines). Panels (a), (c) and (e) are for RUCC=2, 5 and 9, respectively
under Model 1. Panels (b), (d) and (f) are for Income=23.354, 29.176 and 35.301,
respectively under Model 2.
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Figure A.9 Iowa SEER data: Fitted predictive survival curves (thicker lines) with
95% confidence/credible intervals (thinner lines) for women with mean entry age
68.8 years and distant stage of disease who live in the counties with different county
covariate levels under the proposed model (solid lines) and under the marginal PH
model (dashed lines). Panels (a), (c) and (e) are for RUCC=2, 5 and 9. Panels (b),
(d) and (f) are for Income=23.354, 29.176 and 35.301.
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Figure A.10 Iowa SEER data: Estimated Kendall’s tau as a function of RUCC
(solid line) with point-wise 95% credible interval (dashed line) for individuals with
mean entry age 68.8 years and distant stage of disease under Model 1. The
Kendall’s tau under the gamma frailty PH model is also presented in dotted line.

with w̃ being any fixed vector of individual level covariates. Now there are a total of

K(K−1)/2 pairs of survival times (t(s)1,k, t
(s)
2,k) and (t(s)1,`, t

(s)
2,`) among the random sample

{(t(s)1,k, t
(s)
2,k)}Kk=1. We then denote by C(s)

x the total number of concordant pairs, that

is, if (t(s)1,k − t
(s)
1,`)(t

(s)
2,k − t

(s)
2,`) is strictly positive. It follows that the Kendall’s tau for

the sth iteration can be estimated by

τs(x) = 2C(s)
x

K(K − 1)/2 − 1.

Thus we could estimate τ(x) and its credible interval based on the posterior sample

{τs(x)}Ss=1.

For example, Figure A.10 shows the estimated Kendall’s tau for each possible

RUCC level (from 2 to 9) with point-wise 95% credible interval under the Model I

considered in the main body of paper. We can see that the within cluster correlation

increases with RUCC, which agrees perfectly with the finding that frailty variance

increases with RUCC. For comparison, we also calculated the Kendall’s tau for the
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gamma frailty PH model, which is static at a constant value, as shown in Figure A.10

with dotted line.

171



www.manaraa.com

Appendix B

Supplement to Chapter 3

B.1 MCMC sampling

The full likelihood function for the data is given by

L(y,B,σ,K,V, α,µ,θ) ∝
n∏
i=1

(σ2
Ki

)−1/2 exp
{
− 1

2σ2
Ki

(yi − x′iβKi)
2
}

× {δiI(yi = yoi ) + (1− δi)I(yi > yoi )}

× |Cθ|−1/2exp
{
−1

2z′(C−1
θ − In)z

}

×
n∏
i=1

VKi ∏
k<Ki

(1− Vk)


×
{
N−1∏
k=1

Γ(α + 1)
Γ(α) (1− Vk)α−1

}
× αa0−1 exp{−b0α}

×
N∏
k=1
|Σ|−1/2exp

{
−1

2(βk − µ)′Σ−1(βk − µ)
}

×
N∏
k=1

(
σ−2
k

)νa−1
exp

{
−νbσ−2

k

}
× |S0|−1/2exp

{
−1

2(µ−m0)′S−1
0 (µ−m0)

}
× |Σ|−(κ0−p−1)/2exp

{
−1

2tr
(
κ0Σ0Σ−1

)}
× θθ1a−1

1 (1− θ1)θ1b−1 × θθ2a−1
2 e−θ2bθ2

(B.1)

Step 1: Update Ki for i = 1, . . . , n.

The full conditional distribution for Ki is

f(Ki|else) ∝ ωKi(2πσ2
Ki

)−1/2 exp
{
− 1

2σ2
Ki

(yi − x′iβKi)
2
}

∝ ωKiφ(yi|x′iβKi , σ
2
Ki

).
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It follows that

P (Ki = k) = ωkφ(yi|x′iβk, σ2
k)∑N

k=1 ωkφ(yi|x′iβk, σ2
k)
.

Step 2: Update yi for i = 1, . . . , n.

The full conditional distribution for yi is

f(yi|else) ∝ δiI(yi = yoi ) + (1− δi)φ(yi|x′iβKi , σ
2
Ki

) exp
{
−1

2z′(C−1
θ − In)z

}
I(yi > yoi ).

If δi = 1, update yi = yoi . If δi = 0, propose y∗i from N(x′iβKi , σ
2
Ki

) distribution

truncated above at yoi and accept it with probability

min

1,
exp

{
−1

2z∗′(C−1
θ − In)z∗

}
exp

{
−1

2z′(C−1
θ − In)z

}
 ,

where z∗ = (z∗i , . . . , z∗n)′ is the new transformed vector corresponding to y∗i .

Step 3: Update βk for k = 1, . . . , N using Metropolis-Hastings algorithms with

delayed rejection (Tierney and Mira, 1999).

The full conditional distribution for βk is

f(βk|else) ∝ exp

−1
2(βk − µ)′Σ−1(βk − µ)−

∑
{i:Ki=k}

1
2σ2

k

(yi − x′iβk)2


× exp

{
−1

2z′(C−1
θ − In)z

}

∝ exp

−1
2β
′
k

Σ−1 + σ−2
k

∑
{i:Ki=k}

xix′i

βk + β′k

Σ−1µ+ σ−2
k

∑
{i:Ki=k}

xiyi


× exp

{
−1

2z′(C−1
θ − In)z

}
∝ exp

{
−1

2 (βk − µ∗k)
′ (Σ∗k)−1 (βk − µ∗k)

}
exp

{
−1

2z′(C−1
θ − In)z

}
∝ φp (βk|µk,Σk) exp

{
−1

2z′(C−1
θ − In)z

}
,

where

Σk =
Σ−1 + σ−2

k

∑
{i:Ki=k}

xix′i

−1

µk = Σ∗k

Σ−1µ+ σ−2
k

∑
{i:Ki=k}

xiyi

 .
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Propose β∗k from Np (µk,Σk) and accept it with probability

α1(βk,β∗k) = min

1,
exp

{
−1

2z∗′(C−1
θ − In)z∗

}
exp

{
−1

2z′(C−1
θ − In)z

}
 .

If β∗k is rejected, we further propose β∗∗k from Np (βk,Σk) and accept it with proba-

bility α2(βk,β∗k,β∗∗k ) as

min
{

1, f(β∗∗k |else)[1− α1(β∗∗k ,β∗k)]
f(βk|else)[1− α1(βk,β∗k)]

}

= min

1,
φp (β∗∗k |µk,Σk)

[
exp

{
−1

2z∗∗′(C−1
θ − In)z∗∗ + 1

2z∗′(C−1
θ − In)z∗

}
− 1

]
φp (βk|µk,Σk)

[
exp

{
−1

2z′(C−1
θ − In)z + 1

2z∗′(C−1
θ − In)z∗

}
− 1

]
 .

Step 4: Update σ2
k for k = 1, . . . , N .

The full conditional distribution for σ−2
k is

f(σ−2
k |else) ∝

(
σ−2
k

)νa−1
exp

{
−νbσ−2

k

} ∏
{i:Ki=k}

(σ2
k)−1/2 exp

{
− 1

2σ2
k

(yi − x′iβk)2
}

× exp
{
−1

2z′(C−1
θ − In)z

}

∝
(
σ−2
k

)νa+nk/2−1
exp

−
νb + 1

2
∑

{i:Ki=k}
(yi − x′iβk)2

σ−2
k


× exp

{
−1

2z′(C−1
θ − In)z

}
∝ Ga

(
σ−2
k |νa + nk/2, ν∗b,k

)
exp

{
−1

2z′(C−1
θ − In)z

}
,

where

nk =
n∑
i=1

I(Ki = k) and ν∗b,k = ν + 1
2

∑
{i:Ki=k}

(yi − x′iβk)2.

Propose σ−2(∗)
k from Ga

(
νa + nk/2, ν∗b,k

)
and accept it with probability

min

1,
exp

{
−1

2z∗′(C−1
θ − In)z∗

}
exp

{
−1

2z′(C−1
θ − In)z

}
 .

Step 5: Update Vk for k = 1, . . . , N − 1.

Let nk = ∑n
i=1 I(Ki = k). Note that z depends on the values of Vk’s through the
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weithts wk’s. Thus, the full conditional distribution Vi is

f(Vk|else) ∝
n∏
i=1

VKi ∏
k<Ki

(1− Vk)
× N−1∏

k=1
(1− Vk)α−1 exp

{
−1

2z′(C−1
θ − In)z

}

∝ V nk
k (1− Vk)nk+1+nk+2+...+nN+α−1 exp

{
−1

2z′(C−1
θ − In)z

}
.

Propose V ∗k from Beta
(
1 + nk, α +∑N

j=k+1 nj
)
and accept it with probability

min

1,
exp

{
−1

2z∗′(C−1
θ − In)z∗

}
exp

{
−1

2z′(C−1
θ − In)z

}
 .

Step 6: Update α.

The full conditional distribution for α is

f(α|else) ∝
{
N−1∏
k=1

Γ(α + 1)
Γ(α) (1− Vk)α

}
× αa0−1 exp{−b0α}

∝ αa0+N−2 exp
{
−α

(
b0 −

N−1∑
k=1

log(1− Vk)
)}

∝ Ga
(
a0 +N − 1, b0 −

N−1∑
k=1

log(1− Vk)
)
.

Step 7: Update µ.

The full conditional distribution for µ is

f(µ|else) ∝ exp
{
−1

2(µ−m0)′S−1
0 (µ−m0)− 1

2

N∑
k=1

(µ− βk)′Σ−1(µ− βk)
}

∝ exp
{
−1

2 (µ−m∗0)′ (S∗0)−1 (µ−m∗0)
}

∝ Np (m∗0,S∗0) ,

where

S∗0 =
(
S−1

0 +NΣ−1
)−1

and m∗0 = S∗0

(
S−1

0 m0 + Σ−1
N∑
k=1
βk

)
.

Step 8: Update Σ.

The full conditional distribution for Σ−1 is

f(Σ−1|else) ∝ |Σ|−(κ0+1−p−1)/2exp
{
−1

2

N∑
k=1

(µ− βk)′Σ−1(µ− βk)−
1
2tr

(
κ0Σ0Σ−1

)}

∝ Wp

(κ0Σ0 +
N∑
k=1

(µ− βk)(µ− βk)′
)−1

, κ0 +N

 .
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Step 9: Update θ = (θ1, θ2)′ using adaptive Metropolis-Hastings algorithms (Haario

et al., 2001).

Let ϑ = c(ϑ1, ϑ2)′ with ϑ1 = log
(

θ1
1−θ1

)
and ϑ2 = log(θ2). Then, the full conditional

distribution for ϑ is

f(ϑ|else) ∝ |Cθ|−1/2exp
{
−1

2z′C−1
θ z

}
× θθ1a−1

1 (1− θ1)θ1b−1θ2
1e
−ϑ1 × θθ2a−1

2 e−θ2bθ2eϑ2

∝ exp
{
− 1

2 log|Cθ|−
1
2z′C−1

θ z

+ (θ1a + 1) log(θ1) + (θ1b − 1) log(1− θ1)− ϑ1 + θ2a log θ2 − θ2bθ2

}
.

Suppose we are currently in time l and have sampled the states ϑ0,ϑ1, . . . ,ϑl−1. We

select an index l0 > 0 for the length of an initial period and define

Sl =


S0, l ≤ l0

(2.4)2

2 (Cl + 0.05I2) l > l0.

Here Cl is the sample variance of ϑ0,ϑ1, . . . ,ϑl−1. Set ϑ̄l = 1
l

∑l−1
i=0 ϑi. Following

Haario et al. (2001), we can use the recursive equations

ϑ̄l+1 = l

l + 1ϑ̄l + 1
l + 1ϑl

and

Cl+1 = cov(ϑ0,ϑ1, . . . ,ϑl) = 1
l

l∑
i=0
ϑiϑ

′
i −

l + 1
l
ϑ̄l+1ϑ̄

′
l+1

= l − 1
l
Cl + ϑ̄lϑ̄

′
l −

l + 1
l
ϑ̄l+1ϑ̄

′
l+1 + ϑlϑ′l/l.

It follows that for l > l0

Sl+1 = l − 1
l
Sl + (2.4)2

2l
(
lϑ̄lϑ̄

′
l − (l + 1)ϑ̄l+1ϑ̄

′
l+1 + ϑlϑ′l + 0.05Ip

)
.

We propose ϑ∗ from N2(ϑl−1, Sl) and accept it with probability

min
{

1, f(ϑ∗|else)
f(ϑl−1|else)

}
,

in which case we set ϑl = ϑ∗, and otherwise ϑl = ϑl−1.
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B.2 The full scale approximation

A computational bottleneck of the MCMC sampling scheme is inverting the n ×

n matrix Cθ, which typically has computational cost O(n3). In this section, we

introduce a full scale approximation (FSA) approach proposed by Sang and Huang

(2012), which provides a high quality approximation to the correlation function ρ

at both the large and the small spatial scales, such that the inverse of Cθ can be

substantially sped up for large value of n, e.g., n ≥ 500.

Consider a fixed set of “knots” S∗ = {s∗1, . . . , s∗m} chosen from the study region.

The FSA approach approximates the correlation function ρ(s, s′) with

ρ†(s, s′) = ρl(s, s′) + ρs(s, s′). (B.2)

The ρl(s, s′) in (B.2) is the reduced-rank part capturing the long-scale spatial depen-

dence, defined as ρl(s, s′) = ρ′(s,S∗)ρ−1
mm(S∗,S∗)ρ(s′,S∗), where ρ(s,S∗) = [ρ(s, s∗i )]mi=1

is an m× 1 vector, and ρmm(S∗,S∗) = [ρ(s∗i , s∗j)]mi,j=1 is an m×m correlation matrix

at knots S∗. However, ρl(s, s′) cannot well capture the short-scale dependence due

to the fact that it discards entirely the residual part ρ(s, s′) − ρl(s, s′). The idea

of FSA is to add a small-scale part ρs(s, s′) as a sparse approximate of the residual

part, defined by ρs(s, s′) = {ρ(s, s′)− ρl(s, s′)}∆(s, s′), where ∆(s, s′) is a modulating

function, which is specified so that the ρs(s, s′) can well capture the local residual

spatial dependence while still permits efficient computations. Motivated by Konomi

et al. (2014), we first partition the total input space into B disjoint blocks, and then

specify ∆(s, s′) in a way such that the residuals are independent across input blocks,

but the original residual dependence structure within each block is retained. Specifi-

cally, the function ∆(s, s′) is taken to be 1 if s and s′ belong to the same block and 0

otherwise.The approximated correlation function ρ†(s, s′) in (B.2) provides an exact

recovery of the true correlation within each block, and the approximation errors are

ρ(s, s′)− ρl(s, s′) for locations s and s′ in different blocks. Those errors are expected
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to be small for most entries because most of these location pairs are farther apart.

Applying the above FSA approach to approximate the correlation function ρ(s, s′),

we can approximate the correlation matrix ρnn with

ρ†nn = ρl + ρs = ρnmρ
−1
mmρ

′
nm +

(
ρnn − ρnmρ−1

mmρ
′
nm

)
◦∆, (B.3)

where ρnm = [ρ(si, s∗j)]i=1:n,j=1:m, ρmm = [ρ(s∗i , s∗j)]mi,j=1, and ∆ = [∆(si, sj)]ni,j=1.

Here, the notation “◦” represents the element-wise matrix multiplication. It follows

from equation (B.3) that the covariance matrix Cθ can be approximated by

C†θ = θ1ρ
†
nn + (1− θ1)In = θ1ρnmρ

−1
mmρ

′
nm + Cs,

where Cs = θ1ρs + (1 − θ1)In. Applying the Sherman-Woodbury-Morrison formula

for inverse matrices, we can approximate C−1
θ by

(
C†θ
)−1

which is given by

C−1
s − θ1C−1

s ρnm
(
ρmm + θ1ρ

′
nmC−1

s ρnm
)−1

ρ′nmC−1
s . (B.4)

In addition, the determinant of Cθ can be approximated by det
(
C†θ
)
given as

det
{
ρmm + θ1ρ

′
nmC−1

s ρnm
}

det(ρmm)−1 det(Cs). (B.5)

Since the n× n matrix Cs is a block matrix, the right-hand sides of equations (B.4)

and (B.5) involve only inverses and determinants ofm×m low-rank matrices and n×n

block diagonal matrices. Thus the computational complexity can be greatly reduced

relative to the expensive computational cost of using original correlation function for

large value of n.

B.3 Derivation of the CPO statistic

Let fxi and Fxi be the density and distribution functions of Ti given xi, respective-

ly. According to the hierarchical representation in Section 2.2, given all the model
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parameters Θ = (B,σ2,V,θ), we have

fxi(ti|Θ) = 1
ti

N∑
k=1

wk
1
σk
φ

(
log ti − x′iβk

σk

)
,

Fxi(ti|Θ) =
N∑
k=1

wk
1
σk

Φ
(

log ti − x′iβk
σk

)
,

According to the definition of CPO, we have CPOi = f (toi |D−i)
δi S (toi |D−i)

1−δi . Note

that, for δi = 1,

E(t,Θ|D)

{
1

f(toi |t−i,Θ)

}
=
∫ 1
f(toi |t−i,Θ)f(t|Θ)π(Θ)dΘ∏

{j:δj=0} I(tj > toj)dtj∫
f(t|Θ)π(Θ)dΘ∏

{j:δj=0} I(tj > toj)dtj

=
∫
f(t−i|Θ)π(Θ)dΘ∏

{j:δj=0} I(tj > toj)dtj∫
f(toi , t−i|Θ)π(Θ)dΘ∏

{j:δj=0} I(tj > toj)dtj

= f(D−i)
f(toi ,D−i)

= 1
f(toi |D−i)

(B.6)

and for δi = 0,

E(t,Θ|D)

{
1

S(toi |t−i,Θ)

}
=
∫ 1
S(toi |t−i,Θ)f(t|Θ)π(Θ)dΘ∏

{j:δj=0} I(tj > toj)dtj∫
f(t|Θ)π(Θ)dΘ∏

{j:δj=0} I(tj > toj)dtj

=
∫ f(ti|t−i,Θ)
S(toi |t−i,Θ)f(t−i|Θ)π(Θ)dΘ∏

{j:δj=0} I(tj > toj)dtj∫
f(toi |t−i,Θ)f(t−i|Θ)π(Θ)dΘ∏

{j:δj=0} I(tj > toj)dtj

=
∫
f(t−i|Θ)π(Θ)dΘ∏

{j 6=i:δj=0} I(tj > toj)dtj∫
S(toi |t−i,Θ)f(t−i|Θ)π(Θ)dΘ∏

{j 6=i:δj=0} I(tj > toj)dtj

= 1
S(toi |D−i)

(B.7)

Thus it follows that

CPOi =
(
E

[
1

f(toi |t−i,Θ)δiS(toi |t−i,Θ)1−δi

])−1

, (B.8)

where the expectation E is taken with respect to the joint posterior of {t,Θ|D}. Here

f(toi |t−i,Θ) and S(toi |t−i,Θ) are given by

f(toi |t−i,Θ) = 1
σ−i

φ

(
Φ−1 {Fxi(toi |Θ)} − µ−i

σ−i

)
fxi(toi |Θ)

φ (Φ−1 {Fxi(toi |Θ)}) ,

S(toi |t−i,Θ) = 1− Φ
{

Φ−1 {Fxi(toi |Θ)} − µ−i
σ−i

}
,

(B.9)

where µ−i = −∑j 6=iC
−
ijΦ−1 {Fxi(ti|Θ)} /C−ii and σ2

−i = 1/C−ii with C−ij being the ijth

element of C−1.
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B.4 Bayesian approach to Li and Lin (2006)

Model specification

Assume that Ti|xi marginally follows the Cox proportional hazard model with cumu-

lative distribution function (cdf)

Fxi(t) = 1− exp
{
−Λ0(t)ex′iβ

}

and probability density function (pdf)

fxi(t) = exp
{
−Λ0(t)ex′iβ

}
λ0(t)ex′iβ,

where β is a p×1 vector of regression coefficients, λ0(t) is the baseline hazard function

and Λ0(t) =
∫ t
0 λ0(s)ds is the cumulative baseline hazard function. The piecewise

exponential model provides a flexible framework to deal with the baseline hazard (e.g.

Walker and Mallick, 1997; Aslanidou et al., 1998; Qiou et al., 1999). We partition the

time period R+ into M intervals, say Ik = (dk−1, dk], k = 1, . . . ,M , where d0 = 0 and

dM = ∞. The baseline hazard is then assumed to be constant within each interval,

i.e.

λ0(t) =
M∑
k=1

hkI{t ∈ Ik},

where hk iid∼ Ga(ν0h, ν0) are unknown hazard values and I{A} is the usual indicator

function, i.e. 1 when A is true, 0 otherwise. Consequently, the cumulative baseline

hazard function can be written as

Λ0(t) =
M(t)∑
k=1

hk∆k(t),

where M(t) = min{k : dk ≥ t} and ∆k(t) = min{dk, t} − dk−1. In fact, the above

piecewise exponential model centers λ0(t) at the exponential hazard family λh(t) ≡ h

indexed by h. However the resulting predictive density is not differentiable at the

jump points among theM intervals, which is not desirable for many applications and
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especially for prediction purposes. We propose a mixture of piecewise exponential

model by taking the index h to be random; the resulting mixture model yields a dif-

ferentiable, i.e. smooth, density. Specifically, we set dk = F−1
h (k/M), k = 0, . . . ,M ,

where Fh(·) is the cdf of exponential distribution with rate parameter h, and put a

prior on h, say h ∼ N(h0, V0). Regardless, after incorporating spatial dependence

as described in Section 2 of the main article, we consider the following hierarchical

model for the data together with the augmented latent true event-times:

δi|ti = I(ti = toi ), i = 1, . . . , n

ti|β,h ∼ Fxi(t) = 1− exp

−
M(t)∑
k=1

hk∆k(t)ex′iβ

 , i = 1, . . . , n

z = (z1, . . . , zn)′|t,β,θ ∼ Nn(0,C), zi = Φ−1 {Fxi(ti)} , i = 1, . . . , n

hk
iid∼ Ga(r0h, r0), k = 1, . . . ,M, h ∼ N(h0, v

2
0)

β|µ0,Σ0
iid∼ Np(µ0,Σ0)

(θ1, θ2) ∼ Beta(θ1a, θ1b)×Ga(θ2a, θ2b)
(B.10)

where t = (t1, . . . , tn)′, h = (h1, . . . , hM). We consider following default hyper-prior

values: M = 10, r0 = 1, h0 = ĥ, µ0 = 0, Σ0 = 105Ip, θ1a = θ1b = θ2a = θ2b = 1,

where ĥ is the maximum likelihood estimate of the rate parameter h from fitting an

exponential PH model. An R function spCopulaCoxph calling compiled C++ to fit

this model is provided in the R package spBayesSurv accompanying this paper. We

also provide a function indeptCoxph to fit the non-spatial standard PH model with

above baseline specification.

Remark: The function spCopulaCoxph provides an option to determine whether

the centering parameter h is random or not. For random h, the spCopulaCoxph fails

to work for certain data sets especially when spatial correlation is large; while the

function indeptCoxph works without any problem. However, when h is fixed, both

functions work very well.
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MCMC

The full likelihood function for the data is given by

L(t,h,β,θ) ∝
n∏
i=1

exp
{
−Λ0(ti)ex′iβ

}
λ0(ti)ex′iβ {δiI(ti = toi ) + (1− δi)I(ti > toi )}

× |C|−1/2exp
{
−1

2z′(C−1 − In)z
}

×
M∏
k=1

rr0h
0

Γ(r0h)h
r0h−1
k exp{−r0hk} × exp

{
− 1

2v2
0
(h− h0)2

}

× exp
{
−1

2(β − µ0)′Σ−1
0 (β − µ0)

}
× θθ1a−1

1 (1− θ1)θ1b−1 × θθ2a−1
2 e−θ2bθ2

(B.11)

The MCMC sampling steps are as follow:

Step 1: Update h using adaptive Metropolis-Hastings.

The full conditional distribution for h is

f(h|else) ∝
M∏
k=1

rr0h
0

Γ(r0h)h
r0h−1
k I(h > 0) exp

{
− 1

2v2
0

(h− h0)2
}

∝ exp
{
Mr0h log r0 −M log Γ(r0h) + r0h

M∑
k=1

log(hk)−
1

2v2
0

(h− h0)2
}
I(h > 0).

Step 2: Update ti for i = 1, . . . , n.

The full conditional distribution for ti is

f(ti|else) ∝ δiI(ti = toi ) + (1− δi)fxi(ti) exp
{
−1

2z′(C−1 − In)z
}
I(ti > toi ).

If δi = 1, update ti = toi . If δi = 0, propose t∗i = F−1
xi (ui) with ui from Unif (Fxi(toi ), 1),

and then accept it with probability

min

1,
exp

{
−1

2z∗′(C−1 − In)z∗
}

exp
{
−1

2z′(C−1 − In)z
}
 ,

where z∗ = (z∗i , . . . , z∗n)′ is the new transformed vector corresponding to t∗i .
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Step 3: Update hk for k = 1, . . . ,M .

The full conditional distribution for hk is

f(hk|else) ∝ exp

−
n∑
i=1

M(ti)∑
k=1

hk∆k(ti)ex′iβ


 ∏
{i:M(ti)=k}

hM(ti)

hr0h−1
k exp{−r0hk}

× exp
{
−1

2z′(C−1 − In)z
}

∝ exp

−hk ∑
{i:M(ti)≥k}

∆k(ti)ex′iβ


{
h
∑n

i=1 I{M(ti)=k}
k

}
hr0h−1
k exp{−r0hk}

× exp
{
−1

2z′(C−1 − In)z
}

∝ hr0h+mk−1
k exp {− (r0 + lk)hk} exp

{
−1

2z′(C−1 − In)z
}
,

where

mk =
n∑
i=1

I{M(ti) = k} and lk =
∑

{i:M(ti)≥k}
∆k(ti)ex′iβ.

Propose h∗k from Ga (r0h+mk, r0 + lk) and accept it with probability

min

1,
exp

{
−1

2z∗′(C−1 − In)z∗
}

exp
{
−1

2z′(C−1 − In)z
}
 .

Step 4: Update β using adaptive Metropolis-Hastings.

f(β|else) ∝ exp
{

n∑
i=1

(
−Λ0(ti)ex

′
iβ + x′iβ

)
− 1

2(β − µ0)′Σ−1
0 (β − µ0)− 1

2z′(C−1 − In)z
}

Let β̂ be the maximum likelihood estimate of β from fitting an exponential Cox

model and Ŝ0 be its estimated covariance matrix. Suppose we are currently in time

l and have sampled the states β0,β1, . . . ,βl−1. We select an index l0 > 0 for the

length of an initial period and define

Sl =


Ŝ0, l ≤ l0

(2.4)2

p
(Cl + 0.05Ip) l > l0.

where Cl is the sample covariance matrix of β0,β1, . . . ,βl−1. Set β̄l = 1
l

∑l−1
i=0 βi.

Following (Haario et al., 2001), we can use the recursive equations

β̄l+1 = l

l + 1 β̄l + 1
l + 1βl
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and

Cl+1 = cov(β0,β1, . . . ,βl) = 1
l

l∑
i=0
βiβ

′
i −

l + 1
l
β̄l+1β̄

′
l+1

= l − 1
l
Cl + β̄lβ̄

′
l −

l + 1
l
β̄l+1β̄

′
l+1 + βlβ′l/l.

It follows that for l > l0

Sl+1 = l − 1
l
Sl + (2.4)2

2l
(
lβ̄lβ̄

′
l − (l + 1)β̄l+1β̄

′
l+1 + βlβ′l + 0.05Ip

)
.

We propose β∗ from Np(βl−1, Sl) and accept it with probability

min
{

1, f(β∗|else)
f(βl−1|else)

}
.

Step 5: Update θ = (θ1, θ2)′ in the same way as Step 9 in Appendix B.1.

B.5 Additional simulations

Supplements of simulation – Scenario II

We test the performance of LDDPM-spatial model when the PH assumption is satis-

fied and compare it with the PH-spatial model. Similarly to Scenario I, we randomly

select 400 locations over the spatial region [0, 40]× [0, 100] and hold out 100 of them

for assessing the prediction performance. We then simulate the event times T (s) at

these 400 locations from a PH model Fx(t) = 1 − exp {te−x} with the same sample

spatial dependence and distribution on x as described in Scenario I. The noninforma-

tive censoring times are simulated from a uniform distribution on (1, 3) so that the

censoring rate is about 15% ∼ 35%.

Table B.1 presents the posterior inferences for spatial correlation parameters

θ = (θ1, θ2), where the bias of corresponding point estimates (i.e. posterior means),

the Monte Carlo mean of posterior standard deviation estimates (MEAN-SD), the

Monte Carlo standard deviation of point estimates (SD-MEAN), and the Monte Carlo
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Table B.1 Simulated data – Scenario II. True value, bias of the point estimator
(posterior mean), mean (across Monte Carlo replicates) of the posterior standard
deviations (MEAN-SD), standard deviation (across Monte Carlo replicates) of the
point estimator (SD-MEAN), and Monte Carlo coverage probability for the 95%
credible interval (CP) for the spatial correlation parameter θ. The averaged
computing time is also presented.

Model Parameters True BIAS MEAN-SD SD-MEAN CP
LDDPM-spatial θ1 0.98 -0.020 0.026 0.019 0.98

θ2 0.10 0.018 0.027 0.028 0.93
PH-spatial θ1 0.98 -0.015 0.023 0.016 0.99

θ2 0.10 0.009 0.019 0.023 0.90

coverage probability of 95% credible intervals (CP) are reported. The results suggest

that the point estimates of θ are almost unbiased under both the LDDPM-spatial

and PH-spatial models. The MEAN-SD and SD-MEAN values under the PH-spatial

model are fairly close indicating that the posterior standard deviation is an appro-

priate estimator of the frequentist standard error. The CPs are around the nominal

95% level. Overall, even when data are generated from the PH-spatial model, our

model still performs reasonably well.

Figure B.1 shows boxplots of the ISEs for estimated survival curves, LPMLs, and

MSPEs under the considered models. The PH-spatial model provides slightly smaller

biases of the fitted survival functions on average, compared with our model. As for

prediction ability and accuracy, the results show that two models provide almost the

same boxplots of LPMLs and MSPEs, indicating that the LDDP-spatial model is

quite competitive even when the PH assumption is satisfied.

B.6 Additional results to the analysis of frog data

Table B.2 shows posterior estimates of the spatial dependence parameters θ1 and

θ2 under both the LDDPM-spatial and PH-spatial models. Figure B.2 presents the

Kaplan-Meier survival curves for bdwater=0 versus bdwater=1. The results show

that standard parametric or semi-parametric spatial models may be inadequate due
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Figure B.1 Simulated data – Scenario II. Panel (a) and (b): boxplots of ISEs for
fitted survival curves when x = −1 and x = 1, respectively. Panel (c): boxplots of
LPMLs. Panel (d): boxplots of MSPE. In each panel, the two models from left to
right are LDDPM-spatial and PH-spatial, respectively.

to the presence of crossing survivals. Figure B.3 presents the trace plots for the

correlation parameters θ, which mix reasonably well.

Table B.2 Frog data. Posterior statistics for θ1 and θ2 under the LDDPM-spatial
and PH-spatial models assuming the exponential correlation function. The
computing time is also presented.

Model Parameters Mean Median Std. dev. 95% CI
LDDPM-spatial θ1 0.991 0.992 0.004 (0.982, 0.998)
(3.2 hours) θ2 0.133 0.130 0.040 (0.060, 0.216)
PH-spatial θ1 0.995 0.995 0.002 (0.991, 0.999)
(2.8 hours) θ2 0.081 0.080 0.013 (0.059, 0.109)
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Figure B.2 Frog data. Kaplan-Meier survival curves for bdwater=0 (solid) versus
bdwater=1 (dashed).
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Figure B.3 Frog data. Trace plots for θ1 (panel a) and θ2 (panel b).

B.7 Sample R code for simulated data

The R package spBayesSurv is available at the website

http://cran.r-project.org/web/packages/spBayesSurv.

###############################################################

# Sample R code for implementing the marginal LDDPM spatial

# survival model proposed by Zhou, Hanson, and Knapp (2015)

# based on a simulated data: mixture of two normals (see

# Section 4 in the paper).

# Provided by Haiming Zhou on 4/2/2015

###############################################################
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##-------------Load libraries-------------------##

rm(list=ls())

library(MASS)

library(Rcpp)

library(RcppArmadillo)

library(coda)

library(survival)

library(spBayesSurv)

##-------------Set the true models--------------##

## True parameters

betaT = cbind(c(3.5, 0.5), c(2.5, -1));

wT = c(0.4, 0.6);

sig2T = c(1^2, 0.5^2);

theta1 = 0.98; theta2 = 0.1;

## The pdf of Ti:

fi = function(y, xi, w=wT){

nw = length(w);

ny = length(y);

res = matrix(0, ny, nw);

Xi = c(1,xi);

for (k in 1:nw){

res[,k] = w[k]*dnorm(y, sum(Xi*betaT[,k]), sqrt(sig2T[k]) )

}

apply(res, 1, sum)

}

## The CDF of Ti:

Fi = function(y, xi, w=wT){

nw = length(w);

ny = length(y);

res = matrix(0, ny, nw);
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Xi = c(1,xi);

for (k in 1:nw){

res[,k] = w[k]*pnorm(y, sum(Xi*betaT[,k]), sqrt(sig2T[k]) )

}

apply(res, 1, sum)

}

## The inverse for CDF of Ti

Finvsingle = function(u, xi) {

res = uniroot(function (x) Fi(x, xi)-u, lower=-1e50,

upper=1e50, tol=.Machine$double.eps^0.5);

res$root

}

Finv = function(u, xi) {sapply(u, Finvsingle, xi)};

##-------------Generate data-------------------##

## generate coordinates:

## npred is the # of locations for prediction

n = 300; npred = 30; ntot = n + npred;

ldist = 100; wdist = 40;

s1 = runif(ntot, 0, wdist); s2 = runif(ntot, 0, ldist);

s = rbind(s1,s2);

#plot(s[1,], s[2,]);

## divide them into blocks

nldist=5; nwdist=2;

nb=nldist*nwdist; nb; # number of blocks;

coor = matrix(0, nb, 4); ## four edges for each block;

tempindex=1; lstep=ldist/nldist; wstep=wdist/nwdist;

for(i in 1:nwdist){

for(j in 1:nldist){

coor[tempindex,] = c((i-1)*wstep, i*wstep, (j-1)*lstep, j*lstep );

tempindex = tempindex + 1;

}

}
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## Assign block id for each location

blockid = rep(NA,ntot);

for(i in 1:nb){

blockid[((s1>coor[i,1])*(s1<=coor[i,2])*(s2>coor[i,3])*(s2<=coor[i,4]))==1]=i;

}

## Choose knots S*

nldist=5; nwdist=2;

m=nldist*nwdist; m; # number of knots;

ss = matrix(0, m, 2);

tempindex=1; lstep=ldist/nldist; wstep=wdist/nwdist;

for(i in 1:nwdist){

for(j in 1:nldist){

ss[tempindex,] = c( (i-1)*wstep+wstep/2, (j-1)*lstep+lstep/2);

tempindex = tempindex + 1;

}

}

## Covariance matrix

dnn = .Call("DistMat", s, s, PACKAGE = "spBayesSurv");

corT = theta1*exp(-theta2*dnn)+(1-theta1)*diag(ntot);

## Generate x

x = runif(ntot,-1.5,1.5);

X = cbind(rep(1,ntot), x);

p = ncol(X); # number of covariates + 1

## Generate transformed log of survival times

z = mvrnorm(1, rep(0, ntot), corT);

## Generate log of survival times y

u = pnorm(z);

y = rep(0, ntot);

for (i in 1:ntot){

y[i] = Finv(u[i], x[i]);

}

#plot(x,y);
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yTrue = y;

## Censoring scheme

Centime = runif(ntot, 3,4); #Centime = 10000;

delta = (y<=Centime) +0 ;

sum(delta)/ntot; #non-censoring rate

cen = which(delta==0);

y[cen] = Centime[cen];

## make a data frame

dtotal = data.frame(s1=s1, s2=s2, y=y, x=x, delta=delta,

yTrue=yTrue, id=blockid, t=exp(y));

## Hold out npred=30 for prediction purpose

predindex = sample(1:ntot, npred);

dpred = dtotal[predindex,];

dtrain = dtotal[-predindex,];

# rename the variables

d = dtrain; n=nrow(d); n;

d = d[order(d$id),];

s = cbind(d$s1, d$s2);

# FSA settings

knots = list(ss=ss, blockid=d$id);

# Prediction settings

xpred = dpred$x;

s0 = cbind( dpred$s1, dpred$s2 );

prediction = list(spred=s0, xpred=xpred, predid=dpred$id);

###############################################################

# fit the model using default priors

###############################################################
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# MCMC parameters

nburn <- 2000

nsave <- 2000

nskip <- 0

ndisplay <- 500

mcmc <- list(nburn=nburn,

nsave=nsave,

nskip=nskip,

ndisplay=ndisplay)

# Prior information

prior = list(N = 10,

a0 = 2, b0 = 2);

# current state values

state <- NULL;

# Fit the model

ptm <- proc.time()

res = spCopulaDDP( y=d$y, delta=d$delta, x=d$x, s = s, prediction=prediction,

prior=prior, mcmc=mcmc,state=state,FSA=TRUE,knots=knots);

systime = sum((proc.time() - ptm)[1:2]);

# trace plots

par(mfrow = c(3,2))

w.save2 = res$w;

Kindex = which.max(rowMeans(w.save2));

traceplot(mcmc(w.save2[Kindex,]), main="w")

sig2.save2 = res$sigma2;

traceplot(mcmc(sig2.save2[Kindex,]), main="sig2")

beta.save2 = res$beta;

alpha.save2 = res$alpha;

traceplot(mcmc(beta.save2[2,Kindex,]), main="beta")

traceplot(mcmc(alpha.save2), main="alpha")
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theta1.save2 = res$theta1;

theta2.save2 = res$theta2

traceplot(mcmc(theta1.save2), main="theta1")

traceplot(mcmc(theta2.save2), main="theta2")

## LPML

LPML2 = sum(log(res$cpo)); LPML2;

## MSPE

mean((dpred$yTrue-apply(res$Ypred, 1, median))^2);

## Proportions for number of clusters

gg=gg=apply(res$w, 2, function(x) length(which(x>0.001)) );

table(gg)/length(gg);

## plots

par(mfrow = c(2,2));

xnew = c(-1, 1);

xpred = cbind(xnew);

nxpred = nrow(xpred);

ygrid = seq(0,6.0,0.05); tgrid = exp(ygrid);

ngrid = length(ygrid);

estimates = GetCurves(res, xpred, ygrid, CI=c(0.05, 0.95));

fhat = estimates$fhat;

Shat = estimates$Shat;

## density in y

plot(ygrid, fi(ygrid, xnew[1]), "l", lwd=2, ylim=c(0, 0.8),

xlim=c(0,6), main="density in y")

for(i in 1:nxpred){

lines(ygrid, fi(ygrid, xnew[i]), lwd=2)

lines(ygrid, fhat[,i], lty=2, lwd=2, col=4);

}

## survival in y

plot(ygrid, 1-Fi(ygrid, xnew[1]), "l", lwd=2, ylim=c(0, 1),
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xlim=c(0,6), main="survival in y")

for(i in 1:nxpred){

lines(ygrid, 1-Fi(ygrid, xnew[i]), lwd=2)

lines(ygrid, Shat[,i], lty=2, lwd=2, col=4);

lines(ygrid, estimates$Shatup[,i], lty=2, lwd=1, col=4);

lines(ygrid, estimates$Shatlow[,i], lty=2, lwd=1, col=4);

}

## density in t

plot(tgrid, fi(ygrid, xnew[1])/tgrid, "l", lwd=2, ylim=c(0, 0.15),

xlim=c(0,100), main="density in t")

for(i in 1:nxpred){

lines(tgrid, fi(ygrid, xnew[i])/tgrid, lwd=2)

lines(tgrid, fhat[,i]/tgrid, lty=2, lwd=2, col=4);

}

## survival in t

plot(tgrid, 1-Fi(ygrid, xnew[1]), "l", lwd=2, ylim=c(0, 1),

xlim=c(0,100), main="survival in t")

for(i in 1:nxpred){

lines(tgrid, 1-Fi(ygrid, xnew[i]), lwd=2)

lines(tgrid, Shat[,i], lty=2, lwd=2, col=4);

lines(tgrid, estimates$Shatup[,i], lty=2, lwd=1, col=4);

lines(tgrid, estimates$Shatlow[,i], lty=2, lwd=1, col=4);

}

B.8 Measures of dependence

In this section, we explore dependence relations between the original event times

in the framework of copula models. Kendall’s tau and Spearman’s rho are the two

most widely used scale-invariant measures for the overall dependence of a pair of

subjects over the entire lifespan by integrating over time, both of which are based

on a form of dependence known as concordance (Nelsen, 2006). In the context of

survival data, we say a pair of random event times are concordant if large (small)
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values of one tend to be associated with large (small) values of the other, otherwise

they are discordant. Specifically, when Y = (Y1, . . . , Yn) = (log T1, . . . , log Tn) follows

the marginal LDDPM spatial survival model, the Kendall’s tau and Spearman’s rho

of the original event times Ti and Tj (also the same as those of Yi and Yj based on

their definitions) can be expressed as

τKi,j = r
(∫ 1

0

∫ 1

0
Ci,j(ui, uj;θ)dCi,j(ui, uj;θ)

)
− 1 = 4E[Ci,j(Ui, Uj;θ)]− 1 (B.12)

and

ρSi,j = 12
∫ 1

0

∫ 1

0
uiujdCi,j(ui, uj;θ)− 3 = 12E[UiUj]− 3, (B.13)

where Ci,j(ui, uj;θ) is a bivariate marginal of the n-dimensional Gaussian copula

function and (Ui, Uj) ∼ Ci,j(ui, uj;θ). Thus the Kendall’s tau and Spearman’s rho

are uniquely determined by the copula function which further depends on the spatial

correlation parameters θ. The range of these two measures are between -1 and 1,

where the higher the value is, the more concordant the two event times are. Al-

though we don’t have closed forms for both τKij and ρSi,j, we can easily evaluate the

expectations in equations (B.12) and (B.13) via posterior simulation (Smith, 2013).

Given a set of posterior samples {θ(l), l = 1, . . . , L}, we generate an iterate (U (l)
i , U

(l)
j )

from the bivariate marginal Ci,j(ui, uj;θ(l)), and then estimate the Kendall’s tau and

Spearman’s rho by

τ̂Ki,j = 4
L

L∑
l=1

Ci,j(U (l)
i , U

(l)
j ;θ(l))− 1, (B.14)

and

ρ̂Si,j = 12
L

L∑
l=1

U
(l)
i U

(l)
j − 1. (B.15)

For a given copula, the Kendall’s tau and Spearman’s rho between a pair of random

variables are not necessarily the same. In fact they are often quite different for many

families of copulas; see Nelsen (2006) for further illustrations.
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Appendix C

Supplement to Chapter 4

C.1 MCMC Sampling

The joint posterior distribution for all parameters is given by

L(y,γ, β̃,v, σ, τ, α) ∝
m∏
i=1

mi∏
j=1

gxij (yij − z̃′ijβ̃ − vi)I(log lij < yij < log uij)

×
L−1∏
l=1

2l∏
k=1

(
α(l + 1)2

2n

)(q+1)/2 ∣∣X′X∣∣1/2 exp
{
−α(l + 1)2

4n γ ′l,k(X′X)γl,k

}

× exp
{
−1

2(β̃ −m0)′S−1
0 (β̃ −m0)

}
×
(
τ−2

)m−1
2 exp

{
− 1

2τ2 v′(Dw −W )v
}

×
(
σ2
)−aσ−1

exp
{
−bσ/σ2

}
×
(
τ−2

)aτ−1
exp

{
−bττ−2

}
× (α)a0−1 exp {−b0α}

(C.1)

Step 1: Update latent log survival time yij when δij = 0 for j = 1, . . . ,mi, i =

1, . . . ,m.

The full conditional distribution for yij is

p(yij|else) ∝ gz̃ij(yij − z̃′ijβ̃ − vi)I(log lij < yij < log uij).

The single-variable slice sampling method (Neal, 2003) is used.

Step 2: Update γ l,k for k = 1, . . . , 2l, l = 1, . . . , L− 1.
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The full conditional distribution for γ l,k is

p(γ l,k|else) ∝ exp
{
−α(l + 1)2

4n γ ′l,k(X′X)γ l,k
}

m∏
i=1

mi∏
j=1

gxij(εij)

∝ exp
{
−α(l + 1)2

4n γ ′l,k(X′X)γ l,k
} ∏
i,j∈Sk

Yl+1,d2l+1Φσ(εij)e(xij),

where Sk =
{
i, j : d2l+1Φσ(εij)e ∈ {2k, 2k − 1}

}
. Metropolis-Hastings steps with

Gaussian proposals based on iterative weighted least squares (Gamerman, 1997) are

used.

Step 3: Update β̃.

The full conditional distribution for β̃ is

p(β̃|else) ∝ exp
{
−1

2(β̃ −m0)′S−1
0 (β̃ −m0)

} m∏
i=1

mi∏
j=1

gxij(yij − z̃′ijβ̃ − vi).

Single-variable slice sampling is used for updating each component of β̃ separately.

Step 4: Update vi for i = 1, . . . ,m− 1 under the constraint ∑m
i=1 vi = 0.

Under the constraint ∑m
i=1 vi = 0, letting vm = −∑m−1

i=1 vi, one can easily show that

v′(Dw −W )v =
m∑
i=1

wi+v
2
i −

m∑
i=1

m∑
j=1

viwijvj

=
m−1∑
i=1

wi+v
2
i −

m−1∑
i=1

m−1∑
j=1

viwijvj + wm+

(
m−1∑
i=1

vi

)2

+ 2
(
m−1∑
i=1

vi

)
m−1∑
j=1

wmjvj

It follows that the prior for vi, i = 2, . . . ,m, is

p(vi|{vj}j 6=i) ∝ exp
{
− 1

2τ 2 v′(Dw −W )v
}

∝ exp
{
− 1

2τ 2

(
v2
i [wi+ + wm+ + 2wmi]

− 2vi
m−1∑
j 6=i

vj [wij − wm+ − wmj − wmi]
)}

∝ exp
{
−
w∗i+
2τ 2 (vi − µ∗i )

2
}
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where w∗i+ = [wi+ + wm+ + 2wmi] and µ∗i = ∑m−1
j 6=i vj [wij − wm+ − wmj − wmi] /w∗i+.

The full conditional distribution for vi is

p(vi|else) ∝ exp
{
−
w∗i+
2τ 2 (vi − µ∗i )

2
} mi∏
j=1

gxij(yij − z̃′ijβ̃ − vi).

Single-variable slice sampling is used.

Step 5: Update σ2.

The full conditional distribution for σ2 is

p(σ2|else) ∝
(
σ2
)−aσ−1

exp
{
−bσ/σ2

} m∏
i=1

mi∏
j=1

gxij(yij − z̃′ijβ̃ − vi).

Single-variable slice sampling is used.

Step 6: Update τ 2.

The full conditional distribution for τ−2 is

p(τ−2|else) ∝
(
τ−2

)aτ+m−1
2 −1

exp
{
−
[
bτ + 1

2v′(Dw −W )v
]
τ−2

}
.

Thus τ 2 is sampled from Γ(a∗τ , b∗τ ), where a∗τ = aτ + m−1
2 − 1 and b∗τ = bτ + 1

2v′(Dw −

W )v.

Step 7: Update α.

The full conditional distribution for α is

p(α|else) ∝ (α)a0−1 exp {−b0α}
L−1∏
l=1

2l∏
k=1

(α)(q+1)/2 exp
{
−α(l + 1)2

4n γ ′l,k(X′X)γ l,k
}

∝ αa
∗
0−1 exp {−b∗0α} ,

where a∗0 = a0 + (q + 1)(2L−1 − 1) and

b∗0 = b0 +
L−1∑
l=1

2l∑
k=1

(l + 1)2

4n γ ′l,k(X′X)γ l,k.

Thus α is sampled from Γ(a∗0, b∗0).
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C.2 Implementation Using R

We present how to use the R package spBayesSurv to fit the proposed model based on

simulated data. We take Scenario I as an example, but we instead randomly generate

the adjacency matrix W . The following code is used to generate data:

## True densities

Finvsingle = function(u, F) {

res = uniroot(function (x) F(x)-u, lower=-1000, upper=1000,

tol=.Machine$double.eps^0.5);

res$root

}

Finv = function(u, F) {sapply(u, Finvsingle, F)};

f0 = function(x) dnorm(x, 0, 0.8);

F0 = function(x) pnorm(x, 0, 0.8);

shift=1

f1 = function(x) 0.5*dnorm(x, -shift, 0.5) + 0.5*dnorm(x, shift, 0.5)

F1 = function(x) 0.5*pnorm(x, -shift, 0.5) + 0.5*pnorm(x, shift, 0.5);

ff = function(x, xtf=0) {

if(xtf==0) {res=f0(x)} else res=f1(x)

res

}

FF = function(x, xtf=0){

if(xtf==0) {res=F0(x)} else res=F1(x)

res

}

# Simulation settings;

betaT = c(-1, 1, -0.5);

tau2T = 0.1;

m = 64; # blocks
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mi = 10;

mis = rep(mi, m);

id = rep(1:m,mis);

n = length(id); # Total number of subjects

# Generate symmetric adjaceny matrix, W

wi = rep(0, m)

while(any(wi==0)){

W = matrix(0,m,m)

W[upper.tri(W,diag=FALSE)]<-rbinom(m*(m-1)/2,1,.1)

W = W+t(W)

wi = apply(W,1,sum) # No. neighbors

}

# Spatial effects, v

Wstar = matrix(0, m-1, m-1);

Dstar = diag(wi[-m]);

for(i in 1:(m-1)){

for(j in 1:(m-1)){

Wstar[i,j] = W[j,i]-W[j,m]-W[m,i]-wi[m]

}

}

Qstar = Dstar-Wstar;

covT = tau2T*solve(Qstar);

v0 = c(rmvnorm(1,sigma=covT));

v = c(v0,-sum(v0));

vn = rep(v, mis);

# responses

x1 = rnorm(n, 0, 1);

x2 = rbinom(n, 1, 0.5);

xtf = x2; ptf = 2;
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X = cbind(1,x1,x2); pce = ncol(X);

u = runif(n, 0, 1)

y = rep(0, n);

for(i in 1:n) {

if(x2[i]==1) {

y[i] = sum(betaT*X[i,]) + vn[i] + Finv(u[i], F1)

}else{

y[i] = sum(betaT*X[i,]) + vn[i] + Finv(u[i], F0)

}

}

# generate responses

Cen = runif(n, 0.5, 1)

delta = (exp(y)<=Cen)+0;

sum(delta)/n

tTrue = exp(y);

tobs = cbind(tTrue, tTrue);

tobs[which(delta==0),] = cbind(Cen[which(delta==0)], NA);

dtotal = data.frame(tleft=tobs[,1], tright=tobs[,2], x1=x1,

x2=x2, xtf=x2, ID=id, tTrue=tTrue, censor=delta);

## sort the data by ID

d = dtotal[order(dtotal$ID),];

Note that the data have to be sorted by cluster ID before model fitting. The

prior settings in the simulation are: L = 4, a0 = 5, b0 = 1, m0 = 03, S0 = 105I3,

aσ = bσ = 2.001, aτ = bτ = 0.1. The following code illustrates how these priors are

specified:

prior = list(maxL = 4, a0 = 5, b0 = 1, m0 = rep(0,3), S0 = diag(rep(1e5,3)),

siga0 = 2.001, sigb0 = 2.001, taua0 = 0.1, taub0 = 0.1);

201



www.manaraa.com

For each MCMC algorithm, the chain was subsampled every 20 iterates to get a

total of 10, 000 scans after a burn-in period of 50, 000 iterations. The following code

is for MCMC specification:

mcmc=list(nburn=50000, nsave=10000, nskip=19, ndisplay=1000);

Finally the following code is used to fit the model:

res=frailtyGAFT(Surv(tleft, tright, type="interval2")~x1+x2+baseline(x1,x2),

data=d, mcmc=mcmc, prior=prior, frailty="CAR", ID=d$ID,

Proximity=W);

The above function can also fit a GAFT with independent Gaussian frailties by

setting frailty="normal", a GAFT without frailties by setting frailty=NULL, a

semiparametric AFT by removing baseline() and a lognormal AFT by specifying

a0 at a negative value and adding an additional argument state=list(alpha=1e30).

The output is given below:

Generalized accelerated failure time frailty model:

Call:

frailtyGAFT.default(formula = Surv(tleft, tright, type = "interval2") ~

x1 + x2 + baseline(x1, x2), data = d, mcmc = mcmc, prior = prior,

frailty = "CAR", ID = d$ID, Proximity = W)

Posterior inference of regression coefficients

Mean Median Std. Dev. 95%HPD-Low 95%HPD-Upp

intercept -1.03250 -1.03313 0.05876 -1.14984 -0.91519

x1 0.97998 0.98166 0.05274 0.87558 1.07728

x2 -0.54970 -0.54752 0.11725 -0.78024 -0.30805

Posterior inference of scale parameter

202



www.manaraa.com

Mean Median Std. Dev. 95%HPD-Low 95%HPD-Upp

scale 0.84356 0.84095 0.04627 0.75335 0.93333

Posterior inference of precision parameter of LDTFP

Mean Median Std. Dev. 95%HPD-Low 95%HPD-Upp

[1,] 2.775 2.621 1.053 1.049 4.943

Posterior inference of conditional CAR frailty variance

Mean Median Std. Dev. 95%HPD-Low 95%HPD-Upp

variance 0.14578 0.12899 0.08171 0.02296 0.30270

Bayes factors for LDTFP covariate effects:

intercept x1 x2 overall normality

2.325e-01 3.930e-01 2.467e+08 5.764e+07 1.119e+09

Log pseudo marginal likelihood: LPML=161.7173

Deviance information criterion: DIC

Number of subjects:=640

The following code is used to show the trace plots in Figure C.1:

par(cex=1.2,mar=c(4.1,4.1,1,1),cex.lab=1.3,cex.axis=1.1)

par(mfrow = c(3,2))

traceplot(mcmc(res$beta[1,]), main="intercept", xlab="");

traceplot(mcmc(res$beta[2,]), main="x1", xlab="");

traceplot(mcmc(res$beta[3,]), main="x2", xlab="");

traceplot(mcmc(res$tau2), main="tau^2", xlab="");

traceplot(mcmc(res$alpha), main="alpha", xlab="");

traceplot(mcmc(res$sigma2), main="sigma^2", xlab="");
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Figure C.1 Trace plot for a simulated data set.

The following code is used to plot autocorrelation functions (ACF) along with

effective samples sizes:

par(cex=1.2,mar=c(4.1,4.1,3,1),cex.lab=1.3,cex.axis=1.1)

par(mfrow = c(3,2))

plot(acf(mcmc(res$beta[1,]), plot=FALSE),

main=paste("intercept:", "effective size=",

round(effectiveSize(mcmc(res$beta[1,])))), xlab="");

plot(acf(mcmc(res$beta[2,]), plot=FALSE),

main=paste("x1:", "effective size=",

round(effectiveSize(mcmc(res$beta[2,])))), xlab="");

plot(acf(mcmc(res$beta[3,]), plot=FALSE),

main=paste("x2:", "effective size=",

round(effectiveSize(mcmc(res$beta[3,])))), xlab="");
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Figure C.2 ACF plots along with effective sample sizes for a simulated data set.

plot(acf(mcmc(res$tau2), plot=FALSE),

main=paste("tau^2:", "effective size=",

round(effectiveSize(mcmc(res$tau2)))), xlab="");

plot(acf(mcmc(res$alpha), plot=FALSE),

main=paste("alpha:", "effective size=",

round(effectiveSize(mcmc(res$alpha)))), xlab="");

plot(acf(mcmc(res$sigma2), plot=FALSE),

main=paste("sigma^2:", "effective size=",

round(effectiveSize(mcmc(res$sigma2)))), xlab="");

The following code is used to plot survival and density curves in Figure C.3, where

xpred are fixed at zeros if baseline curves are needed:

ygrid = seq(-3,3,0.03); tgrid = exp(ygrid);

ngrid = length(ygrid);
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xnew = c(0, 1)

xpred = cbind(c(1,1.5), xnew);

xtfpred = cbind(c(1,1.5), xnew);

nxpred = nrow(xpred);

estimates = plot(res, xpred, ygrid, xtfpred=xtfpred, CI=0.9, PLOT=F);

## survival function when xtf=(1,0)

pdf(file ="supp_sample_surv1.pdf", paper="special", width=7, height=7);

i=1

par(cex=1.5,mar=c(4.1,4.1,1,1),cex.lab=1.4,cex.axis=1.1)

plot(ygrid, 1-FF(ygrid-sum(c(1,xpred[i,])*betaT),xnew[i]), "l", lwd=3,

xlim=c(-3,3), ylim=c(0,1), main=NULL, xlab="log time", ylab="survival")

polygon(x=c(rev(ygrid),ygrid),

y=c(rev(estimates$Shatlow[,i]),estimates$Shatup[,i]),

border=NA,col="lightgray");

lines(ygrid, 1-FF(ygrid-sum(c(1,xpred[i,])*betaT),xnew[i]), "l", lwd=3,

xlim=c(-3,3), ylim=c(0,1))

lines(ygrid, estimates$Shat[,i], lty=3, lwd=3);

dev.off();

## density function when xtf=(1,0)

pdf(file ="supp_sample_dens1.pdf", paper="special", width=7, height=7);

i=1

par(cex=1.5,mar=c(4.1,4.1,1,1),cex.lab=1.4,cex.axis=1.1)

plot(ygrid, ff(ygrid-sum(c(1,xpred[i,])*betaT),xnew[i]), "l", lwd=3,

xlim=c(-3,3), ylim=c(0,1), main=NULL, xlab="log time", ylab="density")

polygon(x=c(rev(ygrid),ygrid),

y=c(rev(estimates$fhatlow[,i]),estimates$fhatup[,i]),

border=NA,col="lightgray");

lines(ygrid, ff(ygrid-sum(c(1,xpred[i,])*betaT),xnew[i]), "l", lwd=3,

xlim=c(-3,3), ylim=c(0,1))
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lines(ygrid, estimates$fhat[,i], lty=3, lwd=3);

dev.off();

## survival function when xtf=(1.5,1)

pdf(file ="supp_sample_surv2.pdf", paper="special", width=7, height=7);

i=2

par(cex=1.5,mar=c(4.1,4.1,1,1),cex.lab=1.4,cex.axis=1.1)

plot(ygrid, 1-FF(ygrid-sum(c(1,xpred[i,])*betaT),xnew[i]), "l", lwd=3,

xlim=c(-3,3), ylim=c(0,1), main=NULL, xlab="log time", ylab="survival")

polygon(x=c(rev(ygrid),ygrid),

y=c(rev(estimates$Shatlow[,i]),estimates$Shatup[,i]),

border=NA,col="lightgray");

lines(ygrid, 1-FF(ygrid-sum(c(1,xpred[i,])*betaT),xnew[i]), "l", lwd=3,

xlim=c(-3,3), ylim=c(0,1))

lines(ygrid, estimates$Shat[,i], lty=3, lwd=3);

dev.off();

## density function when xtf=(1.5,1)

pdf(file ="supp_sample_dens2.pdf", paper="special", width=7, height=7);

i=2

par(cex=1.5,mar=c(4.1,4.1,1,1),cex.lab=1.4,cex.axis=1.1)

plot(ygrid, ff(ygrid-sum(c(1,xpred[i,])*betaT),xnew[i]), "l", lwd=3,

xlim=c(-3,3), ylim=c(0,1), main=NULL, xlab="log time", ylab="density")

polygon(x=c(rev(ygrid),ygrid),

y=c(rev(estimates$fhatlow[,i]),estimates$fhatup[,i]),

border=NA,col="lightgray");

lines(ygrid, ff(ygrid-sum(c(1,xpred[i,])*betaT),xnew[i]), "l", lwd=3,

xlim=c(-3,3), ylim=c(0,1))

lines(ygrid, estimates$fhat[,i], lty=3, lwd=3);

dev.off();
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Figure C.3 Estimated curves with 90% point-wise credible intervals (gray areas)
for (x1, x2) = (1, 0) (panel a and c) and (x1, x2) = (1.5, 1) (panel b and d) under the
proposed model. The true curves are represented by continuous lines. The results
under the proposed model are represented by dashed lines.
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Table C.1 Simulation data. True value, averaged bias (BIAS) and posterior
standard deviation (PSD) of each point estimate (i.e. posterior mean), standard
deviation (across Monte Carlo simulations) of the point estimates (SD-Est) and
coverage probability (CP) for the 95% credible intervals.

Scenario Parameter True BIAS PSD SD-Est CP
I β0 -1.0 0.007 0.068 0.061 0.970

β1 1.0 0.003 0.036 0.037 0.938
β2 -0.5 0.010 0.133 0.096 0.986
τ 2 0.1 0.034 0.055 0.045 0.974

II β0 -1.0 0.031 0.110 0.085 0.956
β1 1.0 -0.002 0.033 0.034 0.944
β2 -0.5 0.000 0.059 0.060 0.942
τ 2 0.1 0.025 0.050 0.038 0.988

III β0 -1.0 0.005 0.057 0.056 0.960
β1 1.0 0.004 0.038 0.040 0.932
β2 -0.5 -0.004 0.068 0.072 0.932
τ 2 0.1 0.034 0.059 0.046 0.982

C.3 Additional simulation studies

Additional results

The use of Bayes factors allow us to tell which covariates may affect the baseline

survival function and how significant they are. Based on the test results, we can

always remove the covariates that have BF10 < 1 from the LDTFP modeling. For

this reason, Table C.1 reports the parameter inferences with the LDTFP specified

according to the truth, i.e., x̃ij = (1, z2ij)′ under Scenario I and x̃ij = 1 under

Scenarios II & III. The results reveal that the CP values for β̃ are now around the

nominal 95% except the CP for β2 in Scenario I. It seems that our approach tends

to slightly overestimate the standard deviation of the covariate coefficient when that

covariate highly affects the baseline function.
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Sensitivity analysis to the prior of α

We consider two additional priors α ∼ Γ(2, 2) and α ∼ Γ(20, 2) with L = 4 to check

how the results change compared with the results shown in the main article. The

parameter estimates and hypothesis tests are not essentially affected by the choices

of hyperparameters in the prior of α, although we observe that the survival curve

estimates under α ∼ Γ(2, 2) are slightly better than those under α ∼ Γ(20, 2).

Table C.2 Simulation data. The proportions of BF10 greater than 3, 10 and 30,
respectively, across Monte Carlo simulations under the prior α ∼ Γ(20, 2).

Scenario H0 % BF10 > 3 % BF10 > 10 % BF10 > 30
I Υ1 = 0 0.048 0.01 0.002

Υ2 = 0 1 1 1
II Υ1 = 0 0.144 0.018 0.002

Υ2 = 0 0.060 0.008 0.002
Υ−0 = 0 0.098 0.022 0.006
Υ = 0 1 1 1

III Υ1 = 0 0.038 0.004 0
Υ2 = 0 0.054 0.010 0.002
Υ−0 = 0 0.068 0.014 0.004
Υ = 0 0.070 0.016 0.004

Table C.3 Simulation data. The proportions of BF10 greater than 3, 10 and 30,
respectively, across Monte Carlo simulations under the prior α ∼ Γ(2, 2).

Scenario H0 % BF10 > 3 % BF10 > 10 % BF10 > 30
I Υ1 = 0 0.028 0.006 0

Υ2 = 0 1 1 1
II Υ1 = 0 0.032 0.014 0.004

Υ2 = 0 0.022 0.012 0.006
Υ−0 = 0 0.010 0.008 0.006
Υ = 0 1 1 1

III Υ1 = 0 0.052 0.006 0.002
Υ2 = 0 0.038 0.004 0
Υ−0 = 0 0.018 0.002 0.002
Υ = 0 0.006 0.002 0
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Table C.4 Simulation data. True value, averaged bias (BIAS) and posterior
standard deviation (PSD) of each point estimate (i.e. posterior mean), standard
deviation (across Monte Carlo simulations) of the point estimates (SD-Est) and
coverage probability (CP) for the 95% credible intervals under the prior
α ∼ Γ(20, 2).

Scenario Parameter True BIAS PSD SD-Est CP
I β0 -1.0 0.012 0.065 0.058 0.970

β1 1.0 -0.002 0.052 0.046 0.972
β2 -0.5 0.000 0.110 0.094 0.978
τ 2 0.1 0.025 0.054 0.040 0.990

II β0 -1.0 0.018 0.109 0.086 0.970
β1 1.0 -0.009 0.067 0.053 0.978
β2 -0.5 0.003 0.148 0.113 0.986
τ 2 0.1 0.020 0.050 0.039 0.986

III β0 -1.0 0.004 0.060 0.056 0.968
β1 1.0 0.008 0.045 0.041 0.952
β2 -0.5 0.000 0.082 0.079 0.954
τ 2 0.1 0.037 0.060 0.047 0.988

Table C.5 Simulation data. True value, averaged bias (BIAS) and posterior
standard deviation (PSD) of each point estimate (i.e. posterior mean), standard
deviation (across Monte Carlo simulations) of the point estimates (SD-Est) and
coverage probability (CP) for the 95% credible intervals under the prior α ∼ Γ(2, 2).

Scenario Parameter True BIAS PSD SD-Est CP
I β0 -1.0 0.017 0.072 0.065 0.952

β1 1.0 0.002 0.059 0.057 0.946
β2 -0.5 0.002 0.143 0.121 0.970
τ 2 0.1 0.050 0.059 0.054 0.944

II β0 -1.0 0.035 0.131 0.114 0.933
β1 1.0 0.006 0.079 0.077 0.911
β2 -0.5 -0.009 0.181 0.159 0.929
τ 2 0.1 0.043 0.054 0.046 0.966

III β0 -1.0 0.009 0.068 0.063 0.956
β1 1.0 0.007 0.052 0.050 0.960
β2 -0.5 -0.001 0.093 0.085 0.970
τ 2 0.1 0.050 0.063 0.053 0.958
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Figure C.4 Simulated data. Mean, across simulations, of the posterior mean of the
density functions (left three panels) and survival functions (right three panels) of
log survival times for a particular county under Scenario I (panel a and b), Scenario
II (panel c and d) and Scenario III (panel e and f). The curves in each panel of a
and b are for (z, x) = (1.5, 1) (initially left curve) and (z, x) = (1, 0). The other
curves are for (z, x) = (1, 0). The true curves are represented by continuous lines.
The results under the proposed model are represented by dashed lines. Prior
α ∼ Γ(20, 2) is used.
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Figure C.5 Simulated data. Mean, across simulations, of the posterior mean of the
density functions (left three panels) and survival functions (right three panels) of log
survival times for a particular county under Scenario I (panel a and b), Scenario II
(panel c and d) and Scenario III (panel e and f). The curves in each panel of a and b
are for (z, x) = (1.5, 1) (initially left curve) and (z, x) = (1, 0). The other curves are
for (z, x) = (1, 0). The true curves are represented by continuous lines. The results
under the proposed model are represented by dashed lines. Prior α ∼ Γ(2, 2) is used.
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Sensitivity analysis to L

We additionally consider L = 5 with α ∼ Γ(5, 1) to check how the results change

In comparison to the results shown in the main article. We can see that parameter

and curve estimates are not sensitive to the choice of L, but hypothesis tests are

more sensitive. Our tests become more conservative when L increases from 4 to 5 as

indicated in comparison between Table 1 of main article and Table C.6. For instance,

when L increases from 4 to 5, the Bayes factor values become larger overall, especially

for Scenario III (i.e. when the log-normal AFT is the truth).

Table C.6 Simulation data. The proportions of BF10 greater than 3, 10 and 30,
respectively, across Monte Carlo simulations. The LDTFP is truncated at L = 5.

Scenario H0 % BF10 > 3 % BF10 > 10 % BF10 > 30
I Υ1 = 0 0.19 0.032 0.004

Υ2 = 0 1 1 1
II Υ1 = 0 0.176 0.034 0.006

Υ2 = 0 0.113 0.026 0.006
Υ−0 = 0 0.113 0.038 0.012
Υ = 0 1 1 1

III Υ1 = 0 0.488 0.058 0.004
Υ2 = 0 0.318 0.048 0.010
Υ−0 = 0 0.824 0.306 0.064
Υ = 0 0.956 0.614 0.264
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Figure C.6 Simulated data. Mean, across simulations, of the posterior mean of the
density functions (left three panels) and survival functions (right three panels) of
log survival times for a particular county under Scenario I (panel a and b), Scenario
II (panel c and d) and Scenario III (panel e and f). The curves in each panel of a
and b are for (z, x) = (1.5, 1) (initially left curve) and (z, x) = (1, 0). The other
curves are for (z, x) = (1, 0). The true curves are represented by continuous lines.
The results under the proposed model are represented by dashed lines. The LDTFP
is truncated at L = 5.
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Table C.7 Simulation data. True value, averaged bias (BIAS) and posterior
standard deviation (PSD) of each point estimate (i.e. posterior mean), standard
deviation (across Monte Carlo simulations) of the point estimates (SD-Est) and
coverage probability (CP) for the 95% credible intervals. The LDTFP is truncated
at L = 5.

Scenario Parameter True BIAS PSD SD-Est CP
I β0 -1.0 0.012 0.068 0.064 0.948

β1 1.0 0.002 0.056 0.052 0.966
β2 -0.5 0.005 0.128 0.103 0.980
τ 2 0.1 0.037 0.056 0.044 0.980

II β0 -1.0 0.039 0.126 0.107 0.941
β1 1.0 -0.003 0.076 0.067 0.953
β2 -0.5 -0.020 0.171 0.142 0.955
τ 2 0.1 0.035 0.053 0.044 0.970

III β0 -1.0 0.004 0.062 0.056 0.970
β1 1.0 0.002 0.047 0.042 0.962
β2 -0.5 0.001 0.085 0.074 0.978
τ 2 0.1 0.042 0.062 0.050 0.978
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Comparison with the censored quantile regression model

under Scenario I

For further comparison, we also fitted the censored quantile regression model (Port-

noy, 2003) using the function crq available in the quantreg R package (Koenker,

2008) under Scenario I, but with the data generated without frailties. Note that

quantreg does not allow spatial information. In comparison to our approach, the

results show that crq provides almost two times greater standard deviation esti-

mates for non-intercept coefficients, and more troubling, the coverage probability for

estimating β2 is much lower than 95%. These findings inform us that ignoring het-

eroscedastic errors could result in badly overestimated standard deviations and low

coverage probabilities.

Table C.8 Simulation data – Scenario I. True value, averaged bias (BIAS) and
posterior standard deviation (PSD) of each point estimate (i.e. posterior mean),
standard deviation (across Monte Carlo simulations) of the point estimates
(SD-Est) and coverage probability (CP) for the 95% credible intervals for the
regression coefficients. The results are presented under the proposed model (via
frailtyGAFT) and under the censored quantile regression model (via crq).

frailtyGAFT crq
Parameters True BIAS PSD SD-Est CP BIAS PSD SD-Est CP

β0 -1.0 0.011 0.061 0.060 0.952 0.007 0.070 0.067 0.916
β1 1.0 -0.001 0.034 0.040 0.900 0.003 0.089 0.084 0.916
β2 -0.5 0.013 0.124 0.110 0.944 0.011 0.222 0.227 0.866
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Figure C.7 SEER data. Trace and posterior density plots for model parameters.

C.4 Additional analysis of SEER prostate cancer data

MCMC chain analysis and convergence diagnostics

We present the posterior trace plots for β̃, α and σ2 in Figure C.7, and their autocor-

relation function (ACF) plots together with effective samples sizes in Figure C.8. The

Markov chain mixed reasonably well regardless of the high dimension of parameters

in our model.
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Figure C.8 SEER data. ACF plots and effective sample sizes for model parameters.
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Table C.9 SEER data. Posterior means (95% credible intervals) of fixed effects β̃
under the GAFT model (via frailtyGAFT) and under the censored quantile
regression model (via crq). Results are based on standardized ages.

GAFT Quantile regression
Covariates Mean Std. Dev. CI Mean Std. Dev. CI
Intercept 2.87 0.04 ( 2.79, 2.96) 2.78 0.08 ( 2.63, 2.94)

Age -0.55 0.03 (-0.61, -0.49) -0.51 0.04 (-0.59, -0.42)
Race -0.23 0.05 (-0.34, -0.14) -0.21 0.20 (-0.61, 0.19)

Marital -0.30 0.05 (-0.40, -0.21) -0.29 0.05 (-0.39, -0.18)
Grade -0.21 0.05 (-0.31, -0.12) -0.18 0.05 (-0.28, -0.08)
Stage -1.57 0.10 (-1.78, -1.37) -1.63 0.11 (-1.85, -1.42)

Comparison with the censored quantile regression model

The covariate effects are also compared with those obtained under the censored quan-

tile regression model (Portnoy, 2003), where we note that the standard deviation for

race effect is five times greater than that under GAFT, and consequently age becomes

insignificant. This finding is consistent with the results shown in simulations, where

crq tends to severely overestimate the standard deviations of covariate effects when

these covariates may potentially affect the baseline survival function.
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